Calculus of variations
Duality for non-convex variational problems
[Dualité pour des problèmes variationnels non convexes]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 375-379.

On considère des problèmes classiques en calcul de variations de la forme (1), ou Ω est un ouvert borné de RN, (Γ0,Γ1) une partition de ∂Ω, γ une fonction lipschitzienne et f=f(t,z) est une fonction s.c.i. qui vérifie des hypothèses de croissance, avec dépendence convexe en z mais a priori non convexe en t. On présente une nouvelle théorie de dualité, où le problème dual apparaît comme un problème de programmation linéaire. L'existence d'une solution à ce problème constitue une question délicate. Dans cette note, elle est obtenue en dimension un, et en dimension supérieure moyennant quelques hypothèses supplémentaires. Nos résultats s'appliquent à des problèmes de transition de phase et à frontière libre.

We consider classical problems of the calculus of variations of the kind

I(Ω):=inf{Ωf(u,u)dx+Γ1γ(u)dHN1,u=u0onΓ0}(1)
where Ω is an open bounded subset of RN, (Γ0,Γ1) is a partition of ∂Ω, γ is a Lipschitz function, and f=f(t,z) is an l.s.c. function satisfying suitable growth conditions, which is convex in z, but possibly not in t. We present a new duality theory in which the dual problem reads quite nicely as a linear programming problem. The solvability of such a dual problem is a major issue. It can be achieved in the one-dimensional case, and in higher dimensions under special assumptions on f. Our results apply to phase transition and free-boundary problems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.01.014
Bouchitté, Guy 1 ; Fragalà, Ilaria 2

1 Laboratoire IMATH, Université de Toulon et du Var, 83957 La Garde cedex, France
2 Dipartimento di Matematica, Politecnico, Piazza Leonardo da Vinci, 20133 Milano, Italy
@article{CRMATH_2015__353_4_375_0,
     author = {Bouchitt\'e, Guy and Fragal\`a, Ilaria},
     title = {Duality for non-convex variational problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {375--379},
     publisher = {Elsevier},
     volume = {353},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crma.2015.01.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.01.014/}
}
TY  - JOUR
AU  - Bouchitté, Guy
AU  - Fragalà, Ilaria
TI  - Duality for non-convex variational problems
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 375
EP  - 379
VL  - 353
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.01.014/
DO  - 10.1016/j.crma.2015.01.014
LA  - en
ID  - CRMATH_2015__353_4_375_0
ER  - 
%0 Journal Article
%A Bouchitté, Guy
%A Fragalà, Ilaria
%T Duality for non-convex variational problems
%J Comptes Rendus. Mathématique
%D 2015
%P 375-379
%V 353
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.01.014/
%R 10.1016/j.crma.2015.01.014
%G en
%F CRMATH_2015__353_4_375_0
Bouchitté, Guy; Fragalà, Ilaria. Duality for non-convex variational problems. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 375-379. doi : 10.1016/j.crma.2015.01.014. http://www.numdam.org/articles/10.1016/j.crma.2015.01.014/

[1] Alberti, G.; Bouchitté, G.; Dal Maso, G. The calibration method for the Mumford–Shah functional and free-discontinuity problems, Calc. Var. Partial Differ. Equ., Volume 16 (2003), pp. 299-333

[2] Alt, H.W.; Caffarelli, L.A. Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., Volume 325 (1981), pp. 105-144

[3] Attouch, H.; Théra, M. A general duality principle for the sum of two operators, J. Convex Anal., Volume 3 (1996), pp. 1-24

[4] Bouchitté, G.; Fragalà, I.; Lucardesi, I. Shape derivatives for minima of integral functionals, Math. Program., Volume 148 (2014), pp. 111-142

[5] Cannarsa, P.; Sinestrari, C. Semiconcave Functions, Hamilton–Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, vol. 58, Birkhäuser Boston Inc., Boston, MA, USA, 2004

[6] Ekeland, I.; Temam, R. Convex Analysis and Variational Problems, SIAM Classics in Applied Mathematics, vol. 28, 1999

[7] Gao, D.Y. Perfect duality theory and complete solutions to a class of global optimization problems, Optimization, Volume 52 (2003), pp. 467-493

[8] Landes, R. Some remarks on rearrangements and functionals with non-constant densities, Math. Nachr., Volume 280 (2007), pp. 560-570

Cité par Sources :