Partial differential equations/Harmonic analysis
Measure boundary value problems for semilinear elliptic equations with critical Hardy potentials
[Problèmes aux limites avec données mesures pour des équations semi-linéaires elliptiques avec des potentiels de Hardy critiques]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 315-320.

Soient ΩRN un domaine de classe C2 et Lκ=Δκd2d=dist(.,Ω) et 0<κ14. Soient α±=1±14κy,λκ la première valeur propre de Lκ et ϕκ la fonction propre positive correspondante. Si g est une fonction continue croissante vérifiant 1(g(s)+|g(s)|)s22N2+α+2N4+α+ds<, alors pour toutes mesures de Radon νMϕκ(Ω) et μM(Ω), il existe une unique solution faible au problème Pν,μ : Lκu+g(u)=ν dans Ω, u=μ sur ∂Ω. Si g(r)=|r|q1u (q>1), nous démontrons qu'une condition nécessaire et suffisante pour résoudre P0,μ avec μ>0 est que μ soit absolument continue par rapport à la capacité associée à l'espace B22+α+2q,q(RN1). Cette capacité caractérise les ensembles éliminables du bord. Dans le cas sous-critique, nous classifions les singularités isolées au bord des solutions positives.

Let ΩRN be a bounded C2 domain and Lκ=Δκd2 where d=dist(.,Ω) and 0<κ14. Let α±=1±14κ, λκ the first eigenvalue of Lκ with corresponding positive eigenfunction ϕκ. If g is a continuous nondecreasing function satisfying 1(g(s)+|g(s)|)s22N2+α+2N4+α+ds<, then for any Radon measures νMϕκ(Ω) and μM(Ω) there exists a unique weak solution to problem Pν,μ: Lκu+g(u)=ν in Ω, u=μ on ∂Ω. If g(r)=|r|q1u (q>1), we prove that, in the supercritical range of q, a necessary and sufficient condition for solving P0,μ with μ>0 is that μ is absolutely continuous with respect to the capacity associated with the space B22+α+2q,q(RN1). We also characterize the boundary removable sets in terms of this capacity. In the subcritical range of q we classify the isolated singularities of positive solutions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.01.011
Gkikas, Konstantinos T. 1 ; Véron, Laurent 2

1 Centro de Modelamiento Matemàtico, Universidad de Chile, Santiago de Chile, Chile
2 Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 7350, Faculté des Sciences, 37200 Tours, France
@article{CRMATH_2015__353_4_315_0,
     author = {Gkikas, Konstantinos T. and V\'eron, Laurent},
     title = {Measure boundary value problems for semilinear elliptic equations with critical {Hardy} potentials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {315--320},
     publisher = {Elsevier},
     volume = {353},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crma.2015.01.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.01.011/}
}
TY  - JOUR
AU  - Gkikas, Konstantinos T.
AU  - Véron, Laurent
TI  - Measure boundary value problems for semilinear elliptic equations with critical Hardy potentials
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 315
EP  - 320
VL  - 353
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.01.011/
DO  - 10.1016/j.crma.2015.01.011
LA  - en
ID  - CRMATH_2015__353_4_315_0
ER  - 
%0 Journal Article
%A Gkikas, Konstantinos T.
%A Véron, Laurent
%T Measure boundary value problems for semilinear elliptic equations with critical Hardy potentials
%J Comptes Rendus. Mathématique
%D 2015
%P 315-320
%V 353
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.01.011/
%R 10.1016/j.crma.2015.01.011
%G en
%F CRMATH_2015__353_4_315_0
Gkikas, Konstantinos T.; Véron, Laurent. Measure boundary value problems for semilinear elliptic equations with critical Hardy potentials. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 315-320. doi : 10.1016/j.crma.2015.01.011. http://www.numdam.org/articles/10.1016/j.crma.2015.01.011/

[1] Bandle, C.; Moroz, V.; Reichel, W. Boundary blow up type sub-solutions to semilinear elliptic equations with Hardy potential, J. Lond. Math. Soc., Volume 2 (2008), pp. 503-523

[2] Brezis, H.; Marcus, M. Hardy's inequalities revisited, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 25 (1997), pp. 217-237

[3] Davila, J.; Dupaigne, L. Hardy-type inequalities, J. Eur. Math. Soc., Volume 6 (2004), pp. 335-365

[4] Filippas, S.; Moschini, L.; Tertikas, A. Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains, Commun. Math. Phys., Volume 273 (2007), pp. 237-281

[5] Gkikas, K.; Véron, L. Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials, 2014 | arXiv

[6] Marcus, M.; Nguyen, P.T. Moderate solutions of semilinear elliptic equations with Hardy potential, 2014 | arXiv

[7] Marcus, M.; Véron, L. Removable singularities and boundary trace, J. Math. Pures Appl., Volume 80 (2001), pp. 879-900

[8] Marcus, M.; Véron, L. The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption, Commun. Pure Appl. Math., Volume 56 (2003), pp. 689-731

[9] Marcus, M.; Véron, L. Boundary trace of positive solutions of supercritical semilinear elliptic equations in dihedral domains, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (2015) (in press) | DOI

[10] Nguyen, Phuoc T.; Véron, L. Boundary singularities of solutions to elliptic viscous Hamilton–Jacobi equations, J. Funct. Anal., Volume 263 (2012), pp. 1487-1538

[11] Véron, L. Geometric invariance of singular solutions of some nonlinear partial differential equations, Indiana Univ. Math. J., Volume 38 (1989), pp. 75-100

Cité par Sources :