Group theory
Garside families in Artin–Tits monoids and low elements in Coxeter groups
[Familles de Garside dans les monoïdes d'Artin–Tits et éléments bas d'un groupe de Coxeter]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 403-408.

Nous montrons que tout groupe d'Artin–Tits finiment engendré possède une famille de Garside finie, en introduisant la notion d'élément bas dans un groupe de Coxeter et en prouvant que, si (W,S) est un système de Coxeter avec S fini, l'ensemble des éléments bas de W inclut S et est fini et clos par suffixe et borne supérieure dans l'ordre faible à droite.

We show that every finitely generated Artin–Tits group admits a finite Garside family, by introducing the notion of a low element in a Coxeter group and proving that the family of all low elements in a Coxeter system (W,S) with S finite includes S and is finite and closed under suffix and join with respect to the right weak order.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.01.008
Dehornoy, Patrick 1 ; Dyer, Matthew 2 ; Hohlweg, Christophe 3

1 Laboratoire de Mathématiques Nicolas-Oresme, CNRS UMR 6139, Université de Caen, 14032 Caen, France
2 Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, IN 46556, USA
3 Université du Québec à Montréal, LaCIM et Département de mathématiques, CP 8888 Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada
@article{CRMATH_2015__353_5_403_0,
     author = {Dehornoy, Patrick and Dyer, Matthew and Hohlweg, Christophe},
     title = {Garside families in {Artin{\textendash}Tits} monoids and low elements in {Coxeter} groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {403--408},
     publisher = {Elsevier},
     volume = {353},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crma.2015.01.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.01.008/}
}
TY  - JOUR
AU  - Dehornoy, Patrick
AU  - Dyer, Matthew
AU  - Hohlweg, Christophe
TI  - Garside families in Artin–Tits monoids and low elements in Coxeter groups
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 403
EP  - 408
VL  - 353
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.01.008/
DO  - 10.1016/j.crma.2015.01.008
LA  - en
ID  - CRMATH_2015__353_5_403_0
ER  - 
%0 Journal Article
%A Dehornoy, Patrick
%A Dyer, Matthew
%A Hohlweg, Christophe
%T Garside families in Artin–Tits monoids and low elements in Coxeter groups
%J Comptes Rendus. Mathématique
%D 2015
%P 403-408
%V 353
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.01.008/
%R 10.1016/j.crma.2015.01.008
%G en
%F CRMATH_2015__353_5_403_0
Dehornoy, Patrick; Dyer, Matthew; Hohlweg, Christophe. Garside families in Artin–Tits monoids and low elements in Coxeter groups. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 403-408. doi : 10.1016/j.crma.2015.01.008. http://www.numdam.org/articles/10.1016/j.crma.2015.01.008/

[1] Bjorner, A.; Brenti, F. Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, vol. 231, Springer, 2005

[2] Brieskorn, E.; Saito, K. Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271

[3] Brink, B. The set of dominance-minimal roots, J. Algebra, Volume 206 (1998) no. 2, pp. 371-412

[4] Brink, B.; Howlett, B. A finiteness property and an automatic structure for Coxeter groups, Math. Ann., Volume 296 (1993) no. 1, pp. 179-190

[5] Dehornoy, P. Groupes de Garside, Ann. Sci. Éc. Norm. Super., Volume 35 (2002), pp. 267-306

[6] Dehornoy, P.; Paris, L. Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. Lond. Math. Soc., Volume 79 (1999) no. 3, pp. 569-604

[7] Dehornoy, P.; Digne, F.; Michel, J. Garside families and Garside germs, J. Algebra, Volume 380 (2013), pp. 109-145

[8] Dehornoy, P.; Digne, F.; Godelle, E.; Krammer, D.; Michel, J. Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 22, 2015 www.math.unicaen.fr/~garside/Garside.pdf

[9] Dyer, M. Reflection subgroups of Coxeter systems, J. Algebra, Volume 135 (1990), pp. 57-73

[10] Dyer, M. Bruhat intervals, polyhedral cones and Kazhdan–Lusztig–Stanley polynomials, Math. Z., Volume 215 (1994), pp. 223-236

[11] Dyer, M. On the weak order of Coxeter groups, 2011 | arXiv

[12] M. Dyer, C. Hohlweg, Monotonicity of dominance-depth on root systems and applications, in preparation.

[13] Dyer, M.; Hohlweg, C.; Ripoll, V. Imaginary cones and limit roots of infinite Coxeter groups, 2013 http://arXiv.org/abs/1303.6710

[14] Epstein, D.; Cannon, J.; Holt, D.; Levy, S.; Paterson, M.; Thurston, W. Word Processing in Groups, Jones & Bartlett Publ., 1992

[15] Godelle, E.; Paris, L. Basic questions on Artin–Tits groups (Bjorner, A.; Cohen, F.; de Concini, C.; Provesi, C.; Salvetti, M., eds.), Configuration Spaces, Geometry, Combinatorics and Toology, Edizioni della Normale, Scuola Normale Superiore Pisa, 2012, pp. 299-311

[16] Hohlweg, C.; Labbé, J.-P.; Ripoll, V. Asymptotical behaviour of roots of infinite Coxeter groups, Can. J. Math., Volume 66 (2014), pp. 323-353

[17] Michel, J. A note on words in braid monoids, J. Algebra, Volume 215 (1999), pp. 366-377

Cité par Sources :