Nous montrons que tout groupe d'Artin–Tits finiment engendré possède une famille de Garside finie, en introduisant la notion d'élément bas dans un groupe de Coxeter et en prouvant que, si est un système de Coxeter avec S fini, l'ensemble des éléments bas de W inclut S et est fini et clos par suffixe et borne supérieure dans l'ordre faible à droite.
We show that every finitely generated Artin–Tits group admits a finite Garside family, by introducing the notion of a low element in a Coxeter group and proving that the family of all low elements in a Coxeter system with S finite includes S and is finite and closed under suffix and join with respect to the right weak order.
Accepté le :
Publié le :
@article{CRMATH_2015__353_5_403_0, author = {Dehornoy, Patrick and Dyer, Matthew and Hohlweg, Christophe}, title = {Garside families in {Artin{\textendash}Tits} monoids and low elements in {Coxeter} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {403--408}, publisher = {Elsevier}, volume = {353}, number = {5}, year = {2015}, doi = {10.1016/j.crma.2015.01.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.01.008/} }
TY - JOUR AU - Dehornoy, Patrick AU - Dyer, Matthew AU - Hohlweg, Christophe TI - Garside families in Artin–Tits monoids and low elements in Coxeter groups JO - Comptes Rendus. Mathématique PY - 2015 SP - 403 EP - 408 VL - 353 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2015.01.008/ DO - 10.1016/j.crma.2015.01.008 LA - en ID - CRMATH_2015__353_5_403_0 ER -
%0 Journal Article %A Dehornoy, Patrick %A Dyer, Matthew %A Hohlweg, Christophe %T Garside families in Artin–Tits monoids and low elements in Coxeter groups %J Comptes Rendus. Mathématique %D 2015 %P 403-408 %V 353 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2015.01.008/ %R 10.1016/j.crma.2015.01.008 %G en %F CRMATH_2015__353_5_403_0
Dehornoy, Patrick; Dyer, Matthew; Hohlweg, Christophe. Garside families in Artin–Tits monoids and low elements in Coxeter groups. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 403-408. doi : 10.1016/j.crma.2015.01.008. http://www.numdam.org/articles/10.1016/j.crma.2015.01.008/
[1] Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, vol. 231, Springer, 2005
[2] Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271
[3] The set of dominance-minimal roots, J. Algebra, Volume 206 (1998) no. 2, pp. 371-412
[4] A finiteness property and an automatic structure for Coxeter groups, Math. Ann., Volume 296 (1993) no. 1, pp. 179-190
[5] Groupes de Garside, Ann. Sci. Éc. Norm. Super., Volume 35 (2002), pp. 267-306
[6] Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. Lond. Math. Soc., Volume 79 (1999) no. 3, pp. 569-604
[7] Garside families and Garside germs, J. Algebra, Volume 380 (2013), pp. 109-145
[8] Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 22, 2015 www.math.unicaen.fr/~garside/Garside.pdf
[9] Reflection subgroups of Coxeter systems, J. Algebra, Volume 135 (1990), pp. 57-73
[10] Bruhat intervals, polyhedral cones and Kazhdan–Lusztig–Stanley polynomials, Math. Z., Volume 215 (1994), pp. 223-236
[11] On the weak order of Coxeter groups, 2011 | arXiv
[12] M. Dyer, C. Hohlweg, Monotonicity of dominance-depth on root systems and applications, in preparation.
[13] Imaginary cones and limit roots of infinite Coxeter groups, 2013 http://arXiv.org/abs/1303.6710
[14] Word Processing in Groups, Jones & Bartlett Publ., 1992
[15] Basic questions on Artin–Tits groups (Bjorner, A.; Cohen, F.; de Concini, C.; Provesi, C.; Salvetti, M., eds.), Configuration Spaces, Geometry, Combinatorics and Toology, Edizioni della Normale, Scuola Normale Superiore Pisa, 2012, pp. 299-311
[16] Asymptotical behaviour of roots of infinite Coxeter groups, Can. J. Math., Volume 66 (2014), pp. 323-353
[17] A note on words in braid monoids, J. Algebra, Volume 215 (1999), pp. 366-377
Cité par Sources :