Dans ce travail, on donne un résultat de nulle contrôlabilité pour l'équation de la chaleur semi-linéaire dans un domaine borné de , polygonal ou fissuré. On suppose que la non-linearité croît moins vite que quand , et on démontre le résultat par le théorème du point fixe de Schauder.
In this work we give a null-controllability result for the semi-linear heat equation in a polygonal or cracked bounded domain of . We suppose that the nonlinearity grows slower than as and then we prove our result by using Schauder's fixed point theorem.
Accepté le :
Publié le :
@article{CRMATH_2015__353_3_229_0, author = {Ali-Ziane, Tarik and Ferhoune, Zahia and Zair, Ouahiba}, title = {Null controllability for the semilinear heat equation in a non-smooth domain}, journal = {Comptes Rendus. Math\'ematique}, pages = {229--234}, publisher = {Elsevier}, volume = {353}, number = {3}, year = {2015}, doi = {10.1016/j.crma.2015.01.005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.01.005/} }
TY - JOUR AU - Ali-Ziane, Tarik AU - Ferhoune, Zahia AU - Zair, Ouahiba TI - Null controllability for the semilinear heat equation in a non-smooth domain JO - Comptes Rendus. Mathématique PY - 2015 SP - 229 EP - 234 VL - 353 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2015.01.005/ DO - 10.1016/j.crma.2015.01.005 LA - en ID - CRMATH_2015__353_3_229_0 ER -
%0 Journal Article %A Ali-Ziane, Tarik %A Ferhoune, Zahia %A Zair, Ouahiba %T Null controllability for the semilinear heat equation in a non-smooth domain %J Comptes Rendus. Mathématique %D 2015 %P 229-234 %V 353 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2015.01.005/ %R 10.1016/j.crma.2015.01.005 %G en %F CRMATH_2015__353_3_229_0
Ali-Ziane, Tarik; Ferhoune, Zahia; Zair, Ouahiba. Null controllability for the semilinear heat equation in a non-smooth domain. Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 229-234. doi : 10.1016/j.crma.2015.01.005. http://www.numdam.org/articles/10.1016/j.crma.2015.01.005/
[1] Local behavior of solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal., Volume 25 (1967), pp. 81-122
[2] Carleman inequalities for the two-dimensional heat equation in singular domains, Math. Control Relat. Fields, Volume 2 (2012) no. 4, pp. 331-359
[3] Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM Control Optim. Calc. Var., Volume 8 (2002), pp. 621-661
[4] On the density of the range of the semigroup for semilinear heat equations, Minneapolis, MN, 1992 (IMA Vol. Math. Appl.), Volume vol. 70, Springer, New York (1995), pp. 73-91
[5] Null and approximate controllability for weakly blowing-up semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000) no. 5, pp. 583-616
[6] Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, USA, 1985
[7] Singularities in Boundary Value Problems, Recherches en mathématiques appliquées, Research in Applied Mathematics, vol. 22, Masson, Paris, 1992
[8] Régularité des coefficients de propagation de singularités pour l'équation de la chaleur dans un ouvert plan polygonal, C. R. Acad. Sci. Paris, Ser. I, Volume 293 (1981) no. 5, pp. 297-300
[9] Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities, Control Cybern., Volume 28 (1999) no. 3, pp. 665-683
Cité par Sources :