Dans cette note est examinée la stabilisation de la poutre de Timoshenko avec un amortissement localisé. L'amortissement est lié à la somme des vitesses de tassement et de cisaillement angulaire ; ce travail généralise au système de Timoshenko un résultat antérieur de Haraux, établi pour un système d'équations d'ondes ordinaires. D'abord, nous montrons que la stabilité forte a lieu si et seulement si le support du contrôle rencontre une extrémité de l'intervalle considéré. Puis nous utilisons la combinaison de la méthode des multiplicateurs avec la méthode du domaine des fréquences pour démontrer la stabilité exponentielle du semi-groupe associé quand le support du contrôle rencontre une extrémité de l'intervalle considéré. Quand la vitesse de propagation de l'onde générée par le tassement et celle de l'onde générée par l'angle de cisaillement sont distinctes, la preuve est semblable à celle connue pour deux ondes amorties de la même manière. Cependant, quand les deux vitesses sont égales, une identité importante perd sa validité, et la preuve se poursuit par l'introduction d'une équation auxiliaire dont la solution joue un rôle prépondérant dans les estimations ultérieures.
The stabilization of the Timoshenko beam system with localized damping is examined. The damping involves the sum of the bending and shear angle velocities; this work generalizes an earlier result of Haraux, established for a system of ordinary wave equations, to the Timoshenko system. First, we show that strong stability holds if and only if the boundary of the support of the feedback control intersects that of the interval under consideration. Next, we use the frequency domain method combined with the multipliers technique to prove the exponential stability of the associated semigroup when the damping support is a neighborhood of one endpoint of the interval under consideration. When the speed of propagation of the wave generated by the bending and that of the wave generated by the shear angle are distinct, the proof is similar to what is known for two ordinary waves similarly damped. However, when the two speeds are equal, an important identity breaks down, and the proof is carried out by the introduction of an appropriate auxiliary equation whose solution plays a critical role in subsequent estimates.
Accepté le :
Publié le :
@article{CRMATH_2015__353_3_247_0, author = {Tebou, Louis}, title = {A localized nonstandard stabilizer for the {Timoshenko} beam}, journal = {Comptes Rendus. Math\'ematique}, pages = {247--253}, publisher = {Elsevier}, volume = {353}, number = {3}, year = {2015}, doi = {10.1016/j.crma.2015.01.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.01.004/} }
TY - JOUR AU - Tebou, Louis TI - A localized nonstandard stabilizer for the Timoshenko beam JO - Comptes Rendus. Mathématique PY - 2015 SP - 247 EP - 253 VL - 353 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2015.01.004/ DO - 10.1016/j.crma.2015.01.004 LA - en ID - CRMATH_2015__353_3_247_0 ER -
Tebou, Louis. A localized nonstandard stabilizer for the Timoshenko beam. Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 247-253. doi : 10.1016/j.crma.2015.01.004. http://www.numdam.org/articles/10.1016/j.crma.2015.01.004/
[1] Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, Nonlinear Differ. Equ. Appl., Volume 14 (2007), pp. 643-669
[2] Energy decay for Timoshenko systems of memory type, J. Differ. Equ., Volume 194 (2003) no. 1, pp. 82-115
[3] Asymptotic limits and stabilization for the 1D nonlinear Mindlin–Timoshenko system, J. Syst. Sci. Complex., Volume 23 (2010) no. 3, pp. 414-430
[4] Stabilisation frontière indirecte du système de Timoshenko, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 7–8, pp. 379-384
[5] A note on weak stabilizability of contraction semigroups, SIAM J. Control Optim., Volume 16 (1978), pp. 373-379
[6] Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys., Volume 65 (2014) no. 6, pp. 1189-1206
[7] On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., Volume 194 (2009) no. 1, pp. 221-251
[8] Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Port. Math., Volume 46 (1989), pp. 245-258
[9] On a completion problem in the theory of distributed control of wave equations. Nonlinear partial differential equations and their applications, Paris, 1987–1988 (Pitman Res. Notes Math. Ser.), Volume vol. 220, Longman Sci. Tech., Harlow, UK (1991), pp. 241-271
[10] Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differ. Equ., Volume 1 (1985), pp. 43-56
[11] Boundary control of the Timoshenko beam, SIAM J. Control Optim., Volume 25 (1987), pp. 1417-1429
[12] Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., Volume 60 (2009) no. 1, pp. 54-69
[13] Timoshenko systems with indefinite damping, J. Math. Anal. Appl., Volume 341 (2008) no. 2, pp. 1068-1083
[14] On the spectrum of -semigroups, Trans. Amer. Math. Soc., Volume 284 (1984), pp. 847-857
[15] The stability number of the Timoshenko system with second sound, J. Differ. Equ., Volume 253 (2012) no. 9, pp. 2715-2733
[16] Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci. Paris, Ser. I, Volume 328 (1999), pp. 731-734
[17] Simultaneous observability and stabilization of some uncoupled wave equations, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 57-62
[18] Stabilization of the uniform Timoshenko beam by one locally distributed feedback, Appl. Anal., Volume 88 (2009), pp. 1067-1078
Cité par Sources :