Algebra/Topology
On a conjecture of Lionel Schwartz about the eigenvalues of Lannes' T-functor
[À propos d'une conjecture de Lionel Schwartz sur les valeurs propres du foncteur T de Lannes]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 197-202.

Étant donné un nombre premier p, on note Kred(U) le groupe de Grothendieck engendré par les classes d'isomorphisme de modules réduits injectifs indécompsables de la catégorie des modules instable sur l'algèbre de Steenrod modulo p. On note Knred(U), nN, le sous-groupe de Kred(U) engendré par les facteurs indécomposables de HB(Z/p)n. On décrit dans cette note une stratégie pour démontrer la conjecture suivante due à Lionel Schwartz : l'opérateur induit par le foncteur T de Lannes sur l'espace vectoriel rationnel QZKnred(U) est diagonalisable et a pour valeurs propres 1,p,,pn1,pn de multiplicités pnpn1,pn1pn2,,p1,1, respectivement.

Given a prime p, let Kred(U) denote the Grothendieck group generated by the isomorphism classes of indecomposable injective reduced modules in the category of unstable modules over the mod p Steenrod algebra. Let Knred(U), nN, denote the subgroup of Kred(U) generated by the indecomposable summands of HB(Z/p)n. We describe in this note a strategy for the proof of the following conjecture of Lionel Schwartz: the operator induced by Lannes' T-functor on the rational vector space QZKnred(U) is diagonalizable and has eigenvalues 1,p,,pn1,pn with multiplicities pnpn1,pn1pn2,,p1,1, respectively.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.12.006
Hai, Nguyen Dang Ho 1

1 University of Hue, College of Sciences, 77 Nguyen Hue Street, Hue City, Viet Nam
@article{CRMATH_2015__353_3_197_0,
     author = {Hai, Nguyen Dang Ho},
     title = {On a conjecture of {Lionel} {Schwartz} about the eigenvalues of {Lannes'} {T-functor}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {197--202},
     publisher = {Elsevier},
     volume = {353},
     number = {3},
     year = {2015},
     doi = {10.1016/j.crma.2014.12.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.12.006/}
}
TY  - JOUR
AU  - Hai, Nguyen Dang Ho
TI  - On a conjecture of Lionel Schwartz about the eigenvalues of Lannes' T-functor
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 197
EP  - 202
VL  - 353
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.12.006/
DO  - 10.1016/j.crma.2014.12.006
LA  - en
ID  - CRMATH_2015__353_3_197_0
ER  - 
%0 Journal Article
%A Hai, Nguyen Dang Ho
%T On a conjecture of Lionel Schwartz about the eigenvalues of Lannes' T-functor
%J Comptes Rendus. Mathématique
%D 2015
%P 197-202
%V 353
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.12.006/
%R 10.1016/j.crma.2014.12.006
%G en
%F CRMATH_2015__353_3_197_0
Hai, Nguyen Dang Ho. On a conjecture of Lionel Schwartz about the eigenvalues of Lannes' T-functor. Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 197-202. doi : 10.1016/j.crma.2014.12.006. http://www.numdam.org/articles/10.1016/j.crma.2014.12.006/

[1] Adams, J.F.; Gunawardena, J.H.; Miller, H. The Segal conjecture for elementary Abelian p-groups, Topology, Volume 24 (1985) no. 4, pp. 435-460

[2] Carlsson, G. Equivariant stable homotopy and Segal's Burnside ring conjecture, Ann. of Math. (2), Volume 120 (1984) no. 2, pp. 189-224

[3] Cohen, F.R.; Lada, T.J.; May, J.P. The Homology of Iterated Loop Spaces, Lecture Notes in Mathematics, vol. 533, Springer-Verlag, Berlin, 1976

[4] Harris, J.C.; Kuhn, Nicholas J. Stable decompositions of classifying spaces of finite Abelian p-groups, Math. Proc. Camb. Philos. Soc., Volume 103 (1988) no. 3, pp. 427-449

[5] Harris, J.C.; Shank, R.J. Lannes' T functor on summands of H(B(Z/p)s), Trans. Amer. Math. Soc., Volume 333 (1992) no. 2, pp. 579-606

[6] Hunter, D.J.; Kuhn, N.J. Characterizations of spectra with U-injective cohomology which satisfy the Brown–Gitler property, Trans. Amer. Math. Soc., Volume 352 (2000) no. 3, pp. 1171-1190

[7] Lannes, J. Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Publ. Math. IHÉS, Volume 75 (1992), pp. 135-244 (with an appendix by Michel Zisman)

[8] Lannes, J.; Schwartz, L. Sur la structure des A-modules instables injectifs, Topology, Volume 28 (1989) no. 2, pp. 153-169

[9] Lannes, J.; Zarati, S. Sur les U-injectifs, Ann. Sci. École Norm. Super. (4), Volume 19 (1986) no. 2, pp. 303-333

[10] Lannes, J.; Zarati, S. Sur les foncteurs dérivés de la déstabilisation, Math. Z., Volume 194 (1987) no. 1, pp. 25-59

[11] May, J.P. Equivariant Homotopy and Cohomology Theory, CBMS Regional Conference Series in Mathematics, Conference Board of the Mathematical Sciences, Washington, DC, 1996 (with contributions by M. Cole, G. Comezaña, S. Costenoble, A.D. Elmendorf, J.P.C. Greenlees, L.G. Lewis, Jr., R.J. Piacenza, G. Triantafillou, and S. Waner)

[12] Powell, G.M.L. On the derived functors of destabilization at odd primes, Acta Math. Vietnam, Volume 39 (2014) no. 2, pp. 205-236

[13] Schwartz, L. Unstable Modules over the Steenrod Algebra and Sullivan's Fixed Point Set Conjecture, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, USA, 1994

[14] Stroilova, O. The generalized Tate construction, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012 (Ph.D. thesis)

[15] Zarati, S. Dérivés du foncteur de déstabilisation en caractéristique impaire et applications, Université Paris-Sud (Orsay), France, 1984 (Ph.D. thesis)

Cité par Sources :

This work was initiated while the author was a CNRS researcher at LAREMA, Angers. The author would like to thank the CNRS for financial support, LIAFV for travel support and LAREMA for a peaceful working environment. It is a pleasure for the author to thank Geoffrey Powell and Jean Lannes for valuable discussions on the Singer functor and the Segal conjecture, and Lionel Schwartz for his special interest in this work. He also would like to thank the referee for helpful comments that greatly improved the manuscript. The author is partially supported by the NAFOSTED project “Algebraic Topology and Representation Theory”.