Soit X une surface projective lisse sur un corps algébriquement clos k de caractéristique avec semistable et . Étant donné un fibré vectoriel semistable (resp. stable) W de rang 2 sur X, on montre que l'image directe par le morphisme de Frobenius F est aussi semistable (resp. stable).
Let X be a smooth projective surface over an algebraically closed field k of characteristic with semistable and . Given a semistable (resp. stable) vector bundle W of rank 2, we prove that the direct image under the Frobenius morphism F is also semistable (resp. stable).
Accepté le :
Publié le :
@article{CRMATH_2015__353_4_339_0, author = {Liu, Congjun and Zhou, Mingshuo}, title = {The stability of {Frobenius} direct images of rank-two bundles over surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {339--344}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2014.12.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.12.001/} }
TY - JOUR AU - Liu, Congjun AU - Zhou, Mingshuo TI - The stability of Frobenius direct images of rank-two bundles over surfaces JO - Comptes Rendus. Mathématique PY - 2015 SP - 339 EP - 344 VL - 353 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.12.001/ DO - 10.1016/j.crma.2014.12.001 LA - en ID - CRMATH_2015__353_4_339_0 ER -
%0 Journal Article %A Liu, Congjun %A Zhou, Mingshuo %T The stability of Frobenius direct images of rank-two bundles over surfaces %J Comptes Rendus. Mathématique %D 2015 %P 339-344 %V 353 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.12.001/ %R 10.1016/j.crma.2014.12.001 %G en %F CRMATH_2015__353_4_339_0
Liu, Congjun; Zhou, Mingshuo. The stability of Frobenius direct images of rank-two bundles over surfaces. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 339-344. doi : 10.1016/j.crma.2014.12.001. http://www.numdam.org/articles/10.1016/j.crma.2014.12.001/
[1] The Geometry of Moduli Spaces of Sheaves, Aspects Math., vol. 31, Friedr, Vieweg Sohn, Braunschweig, 1997
[2] On vector bundles destabilized by Frobenius pull-back, Compositio Math., Volume 142 (2006) no. 3, pp. 616-630
[3] Canonical filtrations and stability of direct images by Frobenius morphism II, Hiroshima Math. J., Volume 38 (2008), pp. 243-261
[4] Semistable sheaves in positive characteristic, Ann. of Math. (2), Volume 159 (2004), pp. 251-276
[5] Instability of truncated symmetric powers of sheaves, J. Algebra, Volume 386 (2013), pp. 176-189
[6] Direct images of bundles under Frobenius morphism, Invent. Math., Volume 173 (2008), pp. 427-447
[7] Frobenius morphism and semistable bundles, Algebraic Geometry in East Asia (2008), pp. 161-182
Cité par Sources :