On démontre que, pour une sous-variété minimale complète immergée dans l'espace euclidien , si la seconde forme fondamentale A et la fonction distance intrinsèque r mesurée à partir d'un point fixe satisfont l'inégalité pour tous , où ε est une constante positive ne dépendant que de n, alors M est un sous-espace affine de .
We prove that for a complete minimal submanifold immersed in the Euclidean space , if the second fundamental form A and the intrinsic distance function r from a fixed point satisfy for all , where ε is a positive constant depending only on n, then M is an affine subspace of .
Accepté le :
Publié le :
@article{CRMATH_2015__353_2_173_0, author = {Zhao, Entao and Cao, Shunjuan}, title = {A gap theorem for minimal submanifolds in {Euclidean} space}, journal = {Comptes Rendus. Math\'ematique}, pages = {173--177}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.11.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.11.009/} }
TY - JOUR AU - Zhao, Entao AU - Cao, Shunjuan TI - A gap theorem for minimal submanifolds in Euclidean space JO - Comptes Rendus. Mathématique PY - 2015 SP - 173 EP - 177 VL - 353 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.11.009/ DO - 10.1016/j.crma.2014.11.009 LA - en ID - CRMATH_2015__353_2_173_0 ER -
%0 Journal Article %A Zhao, Entao %A Cao, Shunjuan %T A gap theorem for minimal submanifolds in Euclidean space %J Comptes Rendus. Mathématique %D 2015 %P 173-177 %V 353 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.11.009/ %R 10.1016/j.crma.2014.11.009 %G en %F CRMATH_2015__353_2_173_0
Zhao, Entao; Cao, Shunjuan. A gap theorem for minimal submanifolds in Euclidean space. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 173-177. doi : 10.1016/j.crma.2014.11.009. http://www.numdam.org/articles/10.1016/j.crma.2014.11.009/
[1] The compactification of a minimal submanifold in Euclidean space by the Gauss map, 1984 (IHES/Caltech Preprint, 1986)
[2] Mean curvature flow of pinched submanifolds to spheres, J. Differ. Geom., Volume 85 (2010), pp. 357-395
[3] Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differ. Geom., Volume 59 (2001), pp. 177-267
[4] Some old and new results about rigidity of critical metric | arXiv
[5] Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, pp. 59-75
[6] Minimal submanifolds, Bull. Lond. Math. Soc., Volume 38 (2006), pp. 353-395
[7] On Chern's problem for rigidity of minimal hypersurfaces in the spheres, Adv. Math., Volume 227 (2011), pp. 131-145
[8] Gap theorems for minimal submanifolds of Euclidean space, J. Math. Soc. Jpn., Volume 38 (1986), pp. 473-492
[9] Gap theorems for certain submanifolds of Euclidean space and hyperbolic space form II, Katata 1985 (Lect. Notes Math.), Volume vol. 1201 (1985)
[10] Gap theorems for certain submanifolds of Euclidean spaces and hyperbolic space forms, Osaka J. Math., Volume 24 (1987), pp. 679-704
[11] Local rigidity theorems for minimal hypersurfaces, Ann. Math., Volume 89b (1969), pp. 187-197
[12] Gap theorems for minimal submanifolds in , Commun. Anal. Geom., Volume 9 (2001), pp. 641-656
[13] On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., Volume 65 (1979), pp. 45-76
[14] Lectures on Differential Geometry, International Press of Boston, 2010
[15] Curvature estimates for minimal hypersurfaces, Acta Math., Volume 134 (1975), pp. 276-288
[16] The topological sphere theorem for complete submanifolds, Compos. Math., Volume 107 (1997), pp. 221-232
[17] Minimal varieties in Riemannian manifolds, Ann. Math., Volume 88 (1968), pp. 62-105
[18] A general gap theorem for submanifolds with parallel mean curvature in , Commun. Anal. Geom., Volume 15 (2007), pp. 175-193
[19] The second pinching theorem for hypersurfaces with constant mean curvature in a sphere, Math. Ann., Volume 356 (2013), pp. 869-883
[20] Submanifolds with constant mean curvature I, II, Amer. J. Math., Volume 96 (1974), pp. 346-366
Cité par Sources :