Il est connu que le noyau de Bergman associé à , où L est un fibré en droite positif sur une variété complexe compacte, admet un développement asymptotique. Nous prouvons de manière élémentaire que le terme sous-principal de ce développement est donné par la courbure scalaire.
It is known that the Bergman kernel associated with , where L is positive line bundle over a complex compact manifold, has an asymptotic expansion. We give an elementary proof of the fact that the subprincipal term of this expansion is the scalar curvature.
Accepté le :
Publié le :
@article{CRMATH_2015__353_2_121_0, author = {Charles, Laurent}, title = {A note on the {Bergman} {Kernel}}, journal = {Comptes Rendus. Math\'ematique}, pages = {121--125}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.11.007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.11.007/} }
Charles, Laurent. A note on the Bergman Kernel. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 121-125. doi : 10.1016/j.crma.2014.11.007. http://www.numdam.org/articles/10.1016/j.crma.2014.11.007/
[1] A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat., Volume 46 (2008) no. 2, pp. 197-217
[2] Bergman kernels related to Hermitian line bundles over compact complex manifolds, Explorations in Complex and Riemannian Geometry, Contemp. Math., vol. 332, 2003, pp. 1-17
[3] Convergence de la métrique de Fubini–Study d'un fibré linéaire positif, Ann. Inst. Fourier (Grenoble), Volume 40 (1990) no. 1, pp. 117-130
[4] Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux dérivées partielles de Rennes (1975), Astérisque, vols. 34–35, Soc. Math. France, Paris, 1976, pp. 123-164
[5] The Bergman kernel and a theorem of Tian, Katata, 1997 (Trends Math.), Birkhäuser Boston, Boston, MA, USA (1999), pp. 1-23
[6] Berezin–Toeplitz operators, a semi-classical approach, Commun. Math. Phys., Volume 239 (2003) no. 1–2, pp. 1-28
[7] Quasimodes and Bohr–Sommerfeld conditions for the Toeplitz operators, Comm. Partial Differential Equations, Volume 28 (2003) no. 9–10, pp. 1527-1566
[8] Symbolic calculus for Toeplitz operators with half-form, J. Symplectic Geom., Volume 4 (2006) no. 2, pp. 171-198
[9] On the asymptotic expansion of Bergman kernel, J. Differential Geom., Volume 72 (2006) no. 1, pp. 1-41
[10] Multiplier ideal sheaves and analytic methods in algebraic geometry, Trieste, Italy, 2000 (ICTP Lect. Notes), Volume vol. 6, Abdus Salam Int. Cent. Theoret. Phys. (2001), pp. 1-148
[11] Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001) no. 3, pp. 479-522
[12] Discussion of the Kähler–Einstein problem, 2009 http://wwwf.imperial.ac.uk/?skdona/KENOTES.PDF
[13] Quantization and the Hessian of Mabuchi energy, Duke Math. J., Volume 161 (2012) no. 14, pp. 2753-2798
[14] The analysis of linear partial differential operators. I, Distribution Theory and Fourier Analysis, Grundlehren Math. Wiss., Fundamental Principles of Mathematical Sciences, vol. 256, Springer-Verlag, Berlin, 1990
[15] On the lower-order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math., Volume 122 (2000) no. 2, pp. 235-273
[16] Holomorphic Morse Inequalities and Bergman Kernels, Prog. Math., vol. 254, Birkhäuser Verlag, Basel, Switzerland, 2007
[17] Generalized Bergman kernels on symplectic manifolds, Adv. Math., Volume 217 (2008) no. 4, pp. 1756-1815
[18] Berezin–Toeplitz quantization on Kähler manifolds, J. Reine Angew. Math., Volume 662 (2012), pp. 1-56
[19] On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990) no. 1, pp. 99-130
[20] A closed formula for the asymptotic expansion of the Bergman kernel, Commun. Math. Phys., Volume 314 (2012) no. 3, pp. 555-585
[21] Szegő kernels and a theorem of Tian, Int. Math. Res. Not., Volume 6 (1998), pp. 317-331
Cité par Sources :