Algebraic geometry
2-Jordan blocks for the eigenvalue λ=1 of Yomdin–Lê surface singularities
[2-Blocs de Jordan pour la valeur propre λ=1 des singularités de surface de type Yomdin–Lê]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 161-165.

L'objet principal de cet article est de calculer explicitement les blocs de Jordan d'ordre 2 pour la valeur propre λ=1 d'une singularité de surface de type Yomdin–Lê, en fonction des données combinatoires de son cône tangent. Notre méthode s'appuie sur l'utilisation d'une généralisation de la suite spectrale de Steenbrink et d'une certaine résolution torique partielle de cette famille de singularités. La suite spectrale et la résolution partielle ont déjà été développées par l'auteur dans des travaux précédents.

The main purpose of this paper is to explicitly calculate the Jordan blocks of size 2 for the eigenvalue λ=1 of a Yomdin–Lê surface singularity, in terms of the combinatorial data of its tangent cone. Our method relies on the use of a generalization of Steenbrink's spectral sequence and a certain partial toric resolution of this family of singularities. Both the spectral sequence and the partial resolution have already been developed by the author in previous works.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.11.006
Martín-Morales, Jorge 1

1 Centro Universitario de la Defensa – IUMA, Academia General Militar, Ctra. de Huesca s/n, 50090 Zaragoza, Spain
@article{CRMATH_2015__353_2_161_0,
     author = {Mart{\'\i}n-Morales, Jorge},
     title = {2-Jordan blocks for the eigenvalue $ \lambda =1$ of {Yomdin{\textendash}L\^e} surface singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {161--165},
     publisher = {Elsevier},
     volume = {353},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crma.2014.11.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.11.006/}
}
TY  - JOUR
AU  - Martín-Morales, Jorge
TI  - 2-Jordan blocks for the eigenvalue $ \lambda =1$ of Yomdin–Lê surface singularities
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 161
EP  - 165
VL  - 353
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.11.006/
DO  - 10.1016/j.crma.2014.11.006
LA  - en
ID  - CRMATH_2015__353_2_161_0
ER  - 
%0 Journal Article
%A Martín-Morales, Jorge
%T 2-Jordan blocks for the eigenvalue $ \lambda =1$ of Yomdin–Lê surface singularities
%J Comptes Rendus. Mathématique
%D 2015
%P 161-165
%V 353
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.11.006/
%R 10.1016/j.crma.2014.11.006
%G en
%F CRMATH_2015__353_2_161_0
Martín-Morales, Jorge. 2-Jordan blocks for the eigenvalue $ \lambda =1$ of Yomdin–Lê surface singularities. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 161-165. doi : 10.1016/j.crma.2014.11.006. http://www.numdam.org/articles/10.1016/j.crma.2014.11.006/

[1] Artal Bartolo, E. Forme de Jordan de la monodromie des singularités superisolées de surfaces, Mem. Amer. Math. Soc., Volume 109 (1994) no. 525 (x+84)

[2] Artal Bartolo, E.; Luengo, I.; Melle-Hernández, A. Superisolated surface singularities, Singularities and Computer Algebra, Lond. Math. Soc. Lect. Note Ser., vol. 324, Cambridge Univ. Press, Cambridge, UK, 2006, pp. 13-39

[3] Artal Bartolo, E.; Martín-Morales, J.; Ortigas-Galindo, J. Intersection theory on abelian-quotient V-surfaces and Q-resolutions, J. Singul., Volume 8 (2014), pp. 11-30

[4] Lê, D.T. Ensembles analytiques complexes avec lieu singulier de dimension un (d'après I.N. Iomdine), Paris, 1976/1977 (Publ. Math. Univ. Paris VII), Volume vol. 7, Univ. Paris-VII, Paris (1980), pp. 87-95

[5] Luengo, I. The μ-constant stratum is not smooth, Invent. Math., Volume 90 (1987) no. 1, pp. 139-152

[6] Martín-Morales, J. Monodromy zeta function formula for embedded Q-resolutions, Rev. Mat. Iberoam., Volume 29 (2013) no. 3, pp. 939-967

[7] Martín-Morales, J. Embedded Q-resolutions for Yomdin–Lê surface singularities, Isr. J. Math., Volume 204 (2014) no. 1, pp. 97-143 (MR 3273453)

[8] J. Martín-Morales, Semistable reduction of a normal crossing Q-divisor, ArXiv e-prints, 2014.

[9] Steenbrink, J.H.M. Mixed Hodge structure on the vanishing cohomology, Real and Complex Singularities, Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976, Sijthoff and Noordhoff, 1977, pp. 525-563

[10] Stevens, J. On the μ-constant stratum and the V-filtration: an example, Math. Z., Volume 201 (1989) no. 1, pp. 139-144

[11] Yomdin, Y. Complex surfaces with a one-dimensional set of singularities, Sib. Mat. Zh., Volume 15 (1974), pp. 1061-1082 (1181)

Cité par Sources :

The author is partially supported by the Spanish Ministry of Education MTM2010-21740-C02-02, E15 Grupo Consolidado Geometría from the Gobierno de Aragón, FQM-333 from Junta de Andalucía, and PRI-AIBDE-2011-0986 Acción Integrada Hispano-Alemana.