Number theory
Multiple zeta values at the non-positive integers
[Les valeurs de la fonction zêta multiple aux entiers négatifs]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 977-984.

Dans cet article, nous proposons une autre méthode pour calculer les valeurs de la fonction zêta multiple aux entiers négatifs à l'aide de la formule de Raabe et des nombres de Bernoulli.

In this paper, we provide an alternative method to calculate the multiple zeta values at non-positive integers by means of Raabe's formula and the Bernoulli numbers.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.10.001
Sadaoui, Boualem 1

1 Université de Khemis Miliana, Laboratoire LESI, 44225, Khemis Miliana, Algeria
@article{CRMATH_2014__352_12_977_0,
     author = {Sadaoui, Boualem},
     title = {Multiple zeta values at the non-positive integers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {977--984},
     publisher = {Elsevier},
     volume = {352},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crma.2014.10.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.10.001/}
}
TY  - JOUR
AU  - Sadaoui, Boualem
TI  - Multiple zeta values at the non-positive integers
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 977
EP  - 984
VL  - 352
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.10.001/
DO  - 10.1016/j.crma.2014.10.001
LA  - en
ID  - CRMATH_2014__352_12_977_0
ER  - 
%0 Journal Article
%A Sadaoui, Boualem
%T Multiple zeta values at the non-positive integers
%J Comptes Rendus. Mathématique
%D 2014
%P 977-984
%V 352
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.10.001/
%R 10.1016/j.crma.2014.10.001
%G en
%F CRMATH_2014__352_12_977_0
Sadaoui, Boualem. Multiple zeta values at the non-positive integers. Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 977-984. doi : 10.1016/j.crma.2014.10.001. http://www.numdam.org/articles/10.1016/j.crma.2014.10.001/

[1] Akiyama, S.; Egami, S.; Tanigawa, Y. Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith., Volume 98 (2001) no. 2, pp. 107-116

[2] Apostol, T.M. Introduction to Analytic Number Theory, Springer, 1976

[3] Atkinson, F.V. The mean-value of the Riemann zeta function, Acta Math., Volume 81 (1949), pp. 353-376

[4] Borwein, J.M.; Bradley, D.M.; Broadhurst, D.J.; Lisoněk, P. Combinatorial aspects of multiple zeta values, Electron. J. Comb., Volume 5 (1998), pp. 1077-8926

[5] Euler, L. Meditationes circa singulare serierum genus, Novi Commun. Acad. Sci. Petropol., Volume 20 (1775), pp. 140-186 (reprinted in Opera Omnia, Ser. I, vol. 15, B.G. Teubner, Berlin, 1927, pp. 217–267)

[6] Friedman, E.; Pereira, A. Special values of Dirichlet series and zeta integrals, Int. J. Number Theory, Volume 8 (2012) no. 3, pp. 697-714

[7] Friedman, E.; Ruijsenaars, S. Shintani–Barnes zeta and gamma functions, Adv. Math., Volume 187 (2004), pp. 362-395

[8] Granville, A. A decomposition of Riemann's Zeta-function (Motohashi, Y., ed.), Analytic Number Theory, London Mathematical Society Lecture Note Series, vol. 247, Cambridge University Press, 1997, pp. 95-101

[9] Guo, L.; Zhang, B. Renormalization of multiple zeta values, J. Algebra, Volume 319 (2008) no. 9, pp. 3770-3809

[10] Hoffman, M. Multiple harmonic series, Pac. J. Math., Volume 152 (1992), pp. 257-290

[11] Manchon, D.; Paycha, S. Nested sums of symbols and renormalised multiple zeta functions, Int. Math. Res. Not., Volume 24 (2010), pp. 4628-4697

[12] Matsumoto, K. Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc., Volume 128 (2003), pp. 223-243

[13] Ohno, Y. A generalization of the duality and sum formula on the multiple zeta values, J. Number Theory, Volume 101 (1999), pp. 39-43

[14] Zagier, D. Periods of modular forms, traces of Hecke operators and multiple zeta values, Kyoto, 1992, Volume vol. 843 (1993), pp. 162-170

[15] Zagier, D. Values of zeta functions and their applications (Joseph, A. et al., eds.), First European Congress of Mathematics (Paris, 1992), Vol. II, Birkhäuser, Basel, 1994, pp. 497-512

[16] Zhao, J.Q. Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc., Volume 128 (2000), pp. 1275-1283

Cité par Sources :