[Le spectre essentiel des systèmes à N-corps avec interactions asymptotiquement homogènes d'ordre zéro]
Nous étudions le spectre essentiel des hamiltoniens des systèmes à N corps avec potentiels définis par des fonctions qui ont des limites radiales à l'infini. Les résultats étendent le théorème HVZ, qui décrit le spectre essentiel des hamiltoniens des systèmes à N corps usuels. La preuve de notre théorème principal est basée sur une étude approfondie des algèbres générées par les potentiels avec des limites radiales à l'infini et de leurs produits croisés. Nous décrivons également la topologie sur le spectre de ces algèbres, étendant ainsi à notre cas un résultat de A. Mageira. Nos techniques s'appliquent à des classes plus générales de potentiels associées à des algèbres de fonctions uniformément continues bornées invariantes par translation.
We study the essential spectrum of N-body Hamiltonians with potentials defined by functions that have radial limits at infinity. The results extend the HVZ theorem which describes the essential spectrum of usual N-body Hamiltonians. The proof is based on a careful study of algebras generated by potentials and their cross-products. We also describe the topology on the spectrum of these algebras, thus extending to our setting a result of A. Mageira. Our techniques apply to more general classes of potentials associated with translation invariant algebras of bounded uniformly continuous functions on a finite-dimensional vector space X.
Accepté le :
Publié le :
@article{CRMATH_2014__352_12_1023_0, author = {Georgescu, Vladimir and Nistor, Victor}, title = {The essential spectrum of {\protect\emph{N}-body} systems with asymptotically homogeneous order-zero interactions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1023--1027}, publisher = {Elsevier}, volume = {352}, number = {12}, year = {2014}, doi = {10.1016/j.crma.2014.09.029}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.029/} }
TY - JOUR AU - Georgescu, Vladimir AU - Nistor, Victor TI - The essential spectrum of N-body systems with asymptotically homogeneous order-zero interactions JO - Comptes Rendus. Mathématique PY - 2014 SP - 1023 EP - 1027 VL - 352 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.09.029/ DO - 10.1016/j.crma.2014.09.029 LA - en ID - CRMATH_2014__352_12_1023_0 ER -
%0 Journal Article %A Georgescu, Vladimir %A Nistor, Victor %T The essential spectrum of N-body systems with asymptotically homogeneous order-zero interactions %J Comptes Rendus. Mathématique %D 2014 %P 1023-1027 %V 352 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.09.029/ %R 10.1016/j.crma.2014.09.029 %G en %F CRMATH_2014__352_12_1023_0
Georgescu, Vladimir; Nistor, Victor. The essential spectrum of N-body systems with asymptotically homogeneous order-zero interactions. Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 1023-1027. doi : 10.1016/j.crma.2014.09.029. http://www.numdam.org/articles/10.1016/j.crma.2014.09.029/
[1] Regularity for eigenfunctions of Schrödinger operators, Lett. Math. Phys., Volume 101 (2012), pp. 49-84
[2] Self-adjoint operators affiliated to -algebras, Rev. Math. Phys., Volume 16 (2004) no. 2, pp. 257-280
[3] Scattering Theory of Classical and Quantum N-Particle Systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997
[4] Sur les représentations et idéaux de la -algèbre d'un feuilletage, J. Oper. Theory, Volume 8 (1982) no. 1, pp. 95-129
[5] Crossed products of -algebras and spectral analysis of quantum Hamiltonians, Commun. Math. Phys., Volume 228 (2002) no. 3, pp. 519-560
[6] Localizations at infinity and essential spectrum of quantum Hamiltonians. I. General theory, Rev. Math. Phys., Volume 18 (2006) no. 4, pp. 417-483
[7] Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier (Grenoble), Volume 38 (1988) no. 2, pp. 95-112
[8] The essential spectrum of Schrödinger, Jacobi, and CMV operators, J. Anal. Math., Volume 98 (2006), pp. 183-220
[9] Pseudodifferential analysis on continuous family groupoids, Doc. Math., Volume 5 (2000), pp. 625-655 (electronic)
[10] Graded -algebras, J. Funct. Anal., Volume 254 (2008) no. 6, pp. 1683-1701
[11] V. Nistor, N. Prudhon, Exhausting families of representations and spectra of pseudodifferential operators (in final preparation).
[12] Limit Operators and Their Applications in Operator Theory, Operator Theory: Advances and Applications, vol. 150, Birkhäuser Verlag, Basel, Switzerland, 2004
[13] A Groupoid Approach to -Algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980
[14] Propagation of singularities in many-body scattering, Ann. Sci. Éc. Norm. Super. (4), Volume 34 (2001) no. 3, pp. 313-402
Cité par Sources :