Functional analysis/Mathematical physics
The essential spectrum of N-body systems with asymptotically homogeneous order-zero interactions
[Le spectre essentiel des systèmes à N-corps avec interactions asymptotiquement homogènes d'ordre zéro]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 1023-1027.

Nous étudions le spectre essentiel des hamiltoniens des systèmes à N corps avec potentiels définis par des fonctions qui ont des limites radiales à l'infini. Les résultats étendent le théorème HVZ, qui décrit le spectre essentiel des hamiltoniens des systèmes à N corps usuels. La preuve de notre théorème principal est basée sur une étude approfondie des algèbres générées par les potentiels avec des limites radiales à l'infini et de leurs produits croisés. Nous décrivons également la topologie sur le spectre de ces algèbres, étendant ainsi à notre cas un résultat de A. Mageira. Nos techniques s'appliquent à des classes plus générales de potentiels associées à des algèbres de fonctions uniformément continues bornées invariantes par translation.

We study the essential spectrum of N-body Hamiltonians with potentials defined by functions that have radial limits at infinity. The results extend the HVZ theorem which describes the essential spectrum of usual N-body Hamiltonians. The proof is based on a careful study of algebras generated by potentials and their cross-products. We also describe the topology on the spectrum of these algebras, thus extending to our setting a result of A. Mageira. Our techniques apply to more general classes of potentials associated with translation invariant algebras of bounded uniformly continuous functions on a finite-dimensional vector space X.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.09.029
Georgescu, Vladimir 1 ; Nistor, Victor 2, 3

1 Département de mathématiques, Université de Cergy-Pontoise, 95000 Cergy-Pontoise, France
2 Université de Lorraine, UFR MIM, île du Saulcy, CS 50128, 57045 Metz cedex 01, France
3 Pennsylvania State University, Mathematics Department, University Park, PA 16802, USA
@article{CRMATH_2014__352_12_1023_0,
     author = {Georgescu, Vladimir and Nistor, Victor},
     title = {The essential spectrum of {\protect\emph{N}-body} systems with asymptotically homogeneous order-zero interactions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1023--1027},
     publisher = {Elsevier},
     volume = {352},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.029},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.029/}
}
TY  - JOUR
AU  - Georgescu, Vladimir
AU  - Nistor, Victor
TI  - The essential spectrum of N-body systems with asymptotically homogeneous order-zero interactions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 1023
EP  - 1027
VL  - 352
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.09.029/
DO  - 10.1016/j.crma.2014.09.029
LA  - en
ID  - CRMATH_2014__352_12_1023_0
ER  - 
%0 Journal Article
%A Georgescu, Vladimir
%A Nistor, Victor
%T The essential spectrum of N-body systems with asymptotically homogeneous order-zero interactions
%J Comptes Rendus. Mathématique
%D 2014
%P 1023-1027
%V 352
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.09.029/
%R 10.1016/j.crma.2014.09.029
%G en
%F CRMATH_2014__352_12_1023_0
Georgescu, Vladimir; Nistor, Victor. The essential spectrum of N-body systems with asymptotically homogeneous order-zero interactions. Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 1023-1027. doi : 10.1016/j.crma.2014.09.029. http://www.numdam.org/articles/10.1016/j.crma.2014.09.029/

[1] Ammann, B.; Carvalho, C.; Nistor, V. Regularity for eigenfunctions of Schrödinger operators, Lett. Math. Phys., Volume 101 (2012), pp. 49-84

[2] Damak, M.; Georgescu, V. Self-adjoint operators affiliated to C-algebras, Rev. Math. Phys., Volume 16 (2004) no. 2, pp. 257-280

[3] Dereziński, J.; Gérard, C. Scattering Theory of Classical and Quantum N-Particle Systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997

[4] Fack, T.; Skandalis, G. Sur les représentations et idéaux de la C-algèbre d'un feuilletage, J. Oper. Theory, Volume 8 (1982) no. 1, pp. 95-129

[5] Georgescu, V.; Iftimovici, A. Crossed products of C-algebras and spectral analysis of quantum Hamiltonians, Commun. Math. Phys., Volume 228 (2002) no. 3, pp. 519-560

[6] Georgescu, V.; Iftimovici, A. Localizations at infinity and essential spectrum of quantum Hamiltonians. I. General theory, Rev. Math. Phys., Volume 18 (2006) no. 4, pp. 417-483

[7] Helffer, B.; Mohamed, A. Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier (Grenoble), Volume 38 (1988) no. 2, pp. 95-112

[8] Last, Y.; Simon, B. The essential spectrum of Schrödinger, Jacobi, and CMV operators, J. Anal. Math., Volume 98 (2006), pp. 183-220

[9] Lauter, R.; Monthubert, B.; Nistor, V. Pseudodifferential analysis on continuous family groupoids, Doc. Math., Volume 5 (2000), pp. 625-655 (electronic)

[10] Mageira, A. Graded C-algebras, J. Funct. Anal., Volume 254 (2008) no. 6, pp. 1683-1701

[11] V. Nistor, N. Prudhon, Exhausting families of representations and spectra of pseudodifferential operators (in final preparation).

[12] Rabinovich, V.; Roch, S.; Silbermann, B. Limit Operators and Their Applications in Operator Theory, Operator Theory: Advances and Applications, vol. 150, Birkhäuser Verlag, Basel, Switzerland, 2004

[13] Renault, J. A Groupoid Approach to C-Algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980

[14] Vasy, A. Propagation of singularities in many-body scattering, Ann. Sci. Éc. Norm. Super. (4), Volume 34 (2001) no. 3, pp. 313-402

Cité par Sources :