En nous appuyant sur les travaux de Fløystad et Vatne, nous décrivons quelques propriétés homologiques des algèbres extrémales. Plus précisément, nous montrons que les algèbres extrémales sont intègres, nœthériennes, régulières au sens d'Auslander, de Cohen–Macaulay et de Calabi–Yau. Nous calculons également les modules cycliques de la série de Hilbert sur ces algèbres extrémales.
The (generalized) extremal algebra [4] is Noetherian, Auslander regular and Cohen–Macaulay. A necessary and sufficient condition is given for the generalized extremal algebras being Calabi–Yau. The point modules over these algebras are described explicitly.
Accepté le :
Publié le :
@article{CRMATH_2014__352_12_985_0, author = {Wang, Shengqiang and Wu, Quanshui}, title = {Some properties of the extremal algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {985--990}, publisher = {Elsevier}, volume = {352}, number = {12}, year = {2014}, doi = {10.1016/j.crma.2014.09.028}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.028/} }
TY - JOUR AU - Wang, Shengqiang AU - Wu, Quanshui TI - Some properties of the extremal algebras JO - Comptes Rendus. Mathématique PY - 2014 SP - 985 EP - 990 VL - 352 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.09.028/ DO - 10.1016/j.crma.2014.09.028 LA - en ID - CRMATH_2014__352_12_985_0 ER -
%0 Journal Article %A Wang, Shengqiang %A Wu, Quanshui %T Some properties of the extremal algebras %J Comptes Rendus. Mathématique %D 2014 %P 985-990 %V 352 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.09.028/ %R 10.1016/j.crma.2014.09.028 %G en %F CRMATH_2014__352_12_985_0
Wang, Shengqiang; Wu, Quanshui. Some properties of the extremal algebras. Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 985-990. doi : 10.1016/j.crma.2014.09.028. http://www.numdam.org/articles/10.1016/j.crma.2014.09.028/
[1] Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, Prog. Math., vol. 86, 1990, pp. 33-85
[2] Generic flatness for strongly Noetherian algebras, J. Algebra, Volume 221 (1999), pp. 579-610
[3] The diamond lemma for ring theory, Adv. Math., Volume 29 (1978), pp. 178-218
[4] Artin–Schelter regular algebras of dimension five, Algebras, Geometry and Mathematical Physics, Banach Center Publ., vol. 93, 2011, pp. 19-39
[5] Gorensteinness of invariant subrings of quantum algebras, J. Algebra, Volume 221 (1999), pp. 669-691
[6] Gourmet's guide for Gorensteinness, Adv. Math., Volume 151 (2000), pp. 313-345
[7] Skew Calabi–Yau algebras and homological identities, Adv. Math., Volume 264 (2014), pp. 308-354
[8] Existence theorems for dualizing complexes over non-commutative graded and filtered rings, J. Algebra, Volume 195 (1997), pp. 662-679
[9] Twisted graded algebras and equivalences of graded categories, Proc. Lond. Math. Soc., Volume 72 (1996), pp. 281-311
[10] Connected graded Gorenstein algebras with enough normal elements, J. Algebra, Volume 189 (1997), pp. 390-405
[11] Artin–Schelter regular algebras of dimension five with two generators, J. Pure Appl. Algebra, Volume 218 (2014), pp. 937-961
Cité par Sources :