Algebraic geometry
Geometric construction of generators of CoHA of doubled quiver
[Construction géométrique des générateurs de l'algèbre cohomologique de Hall du double d'un carquois]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 1039-1044.

Soit Q le double d'un carquois. Selon Efimov, Kontsevich et Soibelman, l'algèbre cohomologique de Hall (CoHA) associée à Q est une algèbre libre super-commutative. Dans cette note, nous démontrons la conjecture de Hausel, donnant une réalisation géométrique des générateurs de cette algèbre.

Let Q be the double of a quiver. According to Efimov, Kontsevich and Soibelman, the cohomological Hall algebra (CoHA) associated with Q is a free super-commutative algebra. In this short note, we confirm a conjecture of Hausel, which gives a geometric realisation of the generators of the CoHA.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.09.025
Chen, Zongbin 1

1 EPFL SB Mathgeom/Geom, MA B1 447, Lausanne, CH-1015, Switzerland
@article{CRMATH_2014__352_12_1039_0,
     author = {Chen, Zongbin},
     title = {Geometric construction of generators of {CoHA} of doubled quiver},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1039--1044},
     publisher = {Elsevier},
     volume = {352},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.025},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.025/}
}
TY  - JOUR
AU  - Chen, Zongbin
TI  - Geometric construction of generators of CoHA of doubled quiver
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 1039
EP  - 1044
VL  - 352
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.09.025/
DO  - 10.1016/j.crma.2014.09.025
LA  - en
ID  - CRMATH_2014__352_12_1039_0
ER  - 
%0 Journal Article
%A Chen, Zongbin
%T Geometric construction of generators of CoHA of doubled quiver
%J Comptes Rendus. Mathématique
%D 2014
%P 1039-1044
%V 352
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.09.025/
%R 10.1016/j.crma.2014.09.025
%G en
%F CRMATH_2014__352_12_1039_0
Chen, Zongbin. Geometric construction of generators of CoHA of doubled quiver. Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 1039-1044. doi : 10.1016/j.crma.2014.09.025. http://www.numdam.org/articles/10.1016/j.crma.2014.09.025/

[1] Bernstein, J.; Lunts, V. Equivariant Sheaves and Functors, Lect. Notes Math., vol. 1578, Springer-Verlag, Berlin, 1994

[2] Crawley-Boevey, W. Geometry of the moment map for representations of quivers, Compos. Math., Volume 126 (2001) no. 3, pp. 257-293

[3] Crawley-Boevey, W. On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., Volume 118 (2003) no. 2, pp. 339-352

[4] Crawley-Boevey, W.; van den Bergh, M. Absolutely indecomposable representations and Kac–Moody Lie algebras, Invent. Math., Volume 155 (2004) no. 3, pp. 537-559

[5] Efimov, A.I. Cohomological Hall algebra of a symmetric quiver, Compos. Math., Volume 148 (2012) no. 4, pp. 1133-1146

[6] Hausel, T.; Letellier, E.; Rodriguez-Villegas, F. Positivity for Kac polynomials and DT-invariants of quivers, Ann. Math., Volume 177 (2013) no. 3, pp. 1147-1168

[7] V. Ginzburg, Talk at Luminy, 2012.

[8] Kontsevich, M.; Soibelman, Y. Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys., Volume 5 (2011) no. 2, pp. 231-352

[9] Maffei, A. A remark on quiver varieties and Weyl groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 1 (2002) no. 3, pp. 649-686

[10] Laszlo, Y.; Olsson, M. The six operations for sheaves on Artin stacks. I. Finite coefficients, Publ. Math. Inst. Hautes Études Sci., Volume 107 (2008) no. 1, pp. 109-168

[11] Laszlo, Y.; Olsson, M. The six operations for sheaves on Artin stacks. II. Adic coefficients, Publ. Math. Inst. Hautes Études Sci., Volume 107 (2008) no. 1, pp. 169-210

[12] Sun, S. Decomposition theorem for perverse sheaves on Artin stacks over finite fields, Duke Math. J., Volume 161 (2012) no. 12, pp. 2297-2310

[13] Deligne, P. La conjecture de Weil, II, Publ. Math. Inst. Hautes Études Sci., Volume 52 (1980), pp. 137-252

Cité par Sources :