Soit Q le double d'un carquois. Selon Efimov, Kontsevich et Soibelman, l'algèbre cohomologique de Hall (CoHA) associée à Q est une algèbre libre super-commutative. Dans cette note, nous démontrons la conjecture de Hausel, donnant une réalisation géométrique des générateurs de cette algèbre.
Let Q be the double of a quiver. According to Efimov, Kontsevich and Soibelman, the cohomological Hall algebra (CoHA) associated with Q is a free super-commutative algebra. In this short note, we confirm a conjecture of Hausel, which gives a geometric realisation of the generators of the CoHA.
Accepté le :
Publié le :
@article{CRMATH_2014__352_12_1039_0, author = {Chen, Zongbin}, title = {Geometric construction of generators of {CoHA} of doubled quiver}, journal = {Comptes Rendus. Math\'ematique}, pages = {1039--1044}, publisher = {Elsevier}, volume = {352}, number = {12}, year = {2014}, doi = {10.1016/j.crma.2014.09.025}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.025/} }
TY - JOUR AU - Chen, Zongbin TI - Geometric construction of generators of CoHA of doubled quiver JO - Comptes Rendus. Mathématique PY - 2014 SP - 1039 EP - 1044 VL - 352 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.09.025/ DO - 10.1016/j.crma.2014.09.025 LA - en ID - CRMATH_2014__352_12_1039_0 ER -
%0 Journal Article %A Chen, Zongbin %T Geometric construction of generators of CoHA of doubled quiver %J Comptes Rendus. Mathématique %D 2014 %P 1039-1044 %V 352 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.09.025/ %R 10.1016/j.crma.2014.09.025 %G en %F CRMATH_2014__352_12_1039_0
Chen, Zongbin. Geometric construction of generators of CoHA of doubled quiver. Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 1039-1044. doi : 10.1016/j.crma.2014.09.025. http://www.numdam.org/articles/10.1016/j.crma.2014.09.025/
[1] Equivariant Sheaves and Functors, Lect. Notes Math., vol. 1578, Springer-Verlag, Berlin, 1994
[2] Geometry of the moment map for representations of quivers, Compos. Math., Volume 126 (2001) no. 3, pp. 257-293
[3] On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., Volume 118 (2003) no. 2, pp. 339-352
[4] Absolutely indecomposable representations and Kac–Moody Lie algebras, Invent. Math., Volume 155 (2004) no. 3, pp. 537-559
[5] Cohomological Hall algebra of a symmetric quiver, Compos. Math., Volume 148 (2012) no. 4, pp. 1133-1146
[6] Positivity for Kac polynomials and DT-invariants of quivers, Ann. Math., Volume 177 (2013) no. 3, pp. 1147-1168
[7] V. Ginzburg, Talk at Luminy, 2012.
[8] Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys., Volume 5 (2011) no. 2, pp. 231-352
[9] A remark on quiver varieties and Weyl groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 1 (2002) no. 3, pp. 649-686
[10] The six operations for sheaves on Artin stacks. I. Finite coefficients, Publ. Math. Inst. Hautes Études Sci., Volume 107 (2008) no. 1, pp. 109-168
[11] The six operations for sheaves on Artin stacks. II. Adic coefficients, Publ. Math. Inst. Hautes Études Sci., Volume 107 (2008) no. 1, pp. 169-210
[12] Decomposition theorem for perverse sheaves on Artin stacks over finite fields, Duke Math. J., Volume 161 (2012) no. 12, pp. 2297-2310
[13] La conjecture de Weil, II, Publ. Math. Inst. Hautes Études Sci., Volume 52 (1980), pp. 137-252
Cité par Sources :