On note un mouvement brownien linéaire et dim la dimension de Hausdorff. Pour et , nous montrons que, presque sûrement, il n'existe pas d'ensemble tel que et soit α-Hölder continue. La preuve est une application du théorème de Kaufman sur le doublement de dimension. Comme corollaire du théorème ci-dessus, nous montrons que, presque sûrement, il n'existe pas d'ensemble tel que et ait une β-variation finie. L'ensemble des zéros de B et une construction déterministe montrent que les théorèmes ci-dessus donnent les dimensions optimales.
Let be a linear Brownian motion and let dim denote the Hausdorff dimension. Let and . We prove that, almost surely, there exists no set such that and is α-Hölder continuous. The proof is an application of Kaufman's dimension doubling theorem. As a corollary of the above theorem, we show that, almost surely, there exists no set such that and has finite β-variation. The zero set of B and a deterministic construction witness that the above theorems give the optimal dimensions.
Accepté le :
Publié le :
@article{CRMATH_2014__352_12_1057_0, author = {Balka, Rich\'ard and Peres, Yuval}, title = {Restrictions of {Brownian} motion}, journal = {Comptes Rendus. Math\'ematique}, pages = {1057--1061}, publisher = {Elsevier}, volume = {352}, number = {12}, year = {2014}, doi = {10.1016/j.crma.2014.09.023}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.023/} }
TY - JOUR AU - Balka, Richárd AU - Peres, Yuval TI - Restrictions of Brownian motion JO - Comptes Rendus. Mathématique PY - 2014 SP - 1057 EP - 1061 VL - 352 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.09.023/ DO - 10.1016/j.crma.2014.09.023 LA - en ID - CRMATH_2014__352_12_1057_0 ER -
Balka, Richárd; Peres, Yuval. Restrictions of Brownian motion. Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 1057-1061. doi : 10.1016/j.crma.2014.09.023. http://www.numdam.org/articles/10.1016/j.crma.2014.09.023/
[1] Increasing subsequences of random walks (preprint) | arXiv
[2] Isolated zeros for Brownian motion with variable drift, Electron. J. Probab., Volume 16 (2011) no. 65, pp. 1793-1814
[3] Hausdorff measures of different dimensions are isomorphic under the Continuum Hypothesis, Real Anal. Exch., Volume 30 (2004) no. 2, pp. 605-616
[4] Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, 2003
[5] On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set, Z. Wahrscheinlichkeit, Volume 19 (1971), pp. 90-102
[6] Restrictions of continuous functions, Isr. J. Math., Volume 174 (2009), pp. 269-284
[7] Une propriété métrique du mouvement brownien, C. R. Acad. Sci. Paris, Volume 268 (1969), pp. 727-728
[8] Measures of Hausdorff-type, and Brownian motion, Mathematika, Volume 19 (1972), pp. 115-119
[9] Théorie de l'addition des variables aléatoires, Gauthier–Villars, Paris, 1937
[10] Measurable functions are of bounded variation on a set of Hausdorff dimension , Bull. Lond. Math. Soc., Volume 45 (2013), pp. 580-594
[11] Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, UK, 1995
[12] Brownian Motion, with an appendix by Oded Schramm and Wendelin Werner, Cambridge University Press, Cambridge, UK, 2010
Cité par Sources :