Soit une fonction décroissante telle que . Considérons l'ensemble de toutes les fonctions u qui sont harmoniques dans et satisfont . On montre que est une famille normale dans P.
Let M: be a decreasing function such that . Consider the set of all functions u harmonic in and satisfying . We prove that is a normal family in P.
Accepté le :
Publié le :
@article{CRMATH_2014__352_11_889_0, author = {Logunov, Alexander}, title = {On the higher dimensional harmonic analog of the {Levinson} $ \mathrm{log}\mathrm{log}$ theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {889--893}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.09.019}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.019/} }
TY - JOUR AU - Logunov, Alexander TI - On the higher dimensional harmonic analog of the Levinson $ \mathrm{log}\mathrm{log}$ theorem JO - Comptes Rendus. Mathématique PY - 2014 SP - 889 EP - 893 VL - 352 IS - 11 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.09.019/ DO - 10.1016/j.crma.2014.09.019 LA - en ID - CRMATH_2014__352_11_889_0 ER -
%0 Journal Article %A Logunov, Alexander %T On the higher dimensional harmonic analog of the Levinson $ \mathrm{log}\mathrm{log}$ theorem %J Comptes Rendus. Mathématique %D 2014 %P 889-893 %V 352 %N 11 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.09.019/ %R 10.1016/j.crma.2014.09.019 %G en %F CRMATH_2014__352_11_889_0
Logunov, Alexander. On the higher dimensional harmonic analog of the Levinson $ \mathrm{log}\mathrm{log}$ theorem. Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 889-893. doi : 10.1016/j.crma.2014.09.019. http://www.numdam.org/articles/10.1016/j.crma.2014.09.019/
[1] On growth and decay of harmonic functions, Proc. R. Ir. Acad., Ser. A Math. Phys. Sci., Volume 87 (1987) no. 2, pp. 107-116
[2] Harmonic Function Theory, Grad. Texts Math., vol. 137, Springer-Verlag, New York, 2001
[3] Abstract theory of universal series and applications, Proc. Lond. Math. Soc., Volume 96 (2008), pp. 417-463
[4] Analytic continuation across a linear boundary, Acta Math., Volume 128 (1971), pp. 153-182
[5] Extension d'un théorème de Liouville, Acta Math., Volume 48 (1926), pp. 363-366
[6] On the existence of a largest subharmonic minorant of a given function, Ark. Mat., Volume 3 (1958) no. 5, pp. 429-440
[7] Uniform boundness in families related to subharmonic functions, J. Lond. Math. Soc. (2), Volume 38 (1988) no. 3, pp. 485-491
[8] An asymptotic Cauchy problem for the Laplace equation, Ark. Mat., Volume 34 (1996), pp. 245-264
[9] On point to point reflection of harmonic functions across real-analytic hypersurfaces in , J. Anal. Math., Volume 68 (1996), pp. 145-182
[10] Axially symmetric potentials and fractional integration, J. Soc. Ind. Appl. Math., Volume 13 (1965) no. 1, pp. 216-228
[11] Boundary behaviour of universal Taylor series, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 2, pp. 99-103
[12] Universal overconvergence of homogeneous expansions of harmonic functions, Analysis, Volume 26 (2006), pp. 287-293
[13] On N. Levinson's theorem on normal families of subharmonic functions, Zap. Nauč. Semin. POMI, Volume 19 (1970), pp. 215-220 (in Russian)
[14] A growth condition for the MacLane class, Proc. Lond. Math. Soc., Volume 23 (1971), pp. 371-384
[15] On reflection of harmonic functions in surfaces of revolution, Complex Var. Theory Appl., Volume 17 (1991) no. 1–2, pp. 7-14
[16] The Logarithmic Integral. I, Camb. Stud. Adv. Math., vol. 12, Cambridge University Press, Cambridge, UK, 1988
[17] Gap and Density Theorems, American Mathematical Society Colloquium Publications, vol. 26, American Mathematical Society, New York, 1940
[18] Universal polynomial expansions of harmonic functions, Potential Anal., Volume 38 (2013), pp. 985-1000
[19] On the growth of entire functions that admit a certain estimate from below, Dokl. Akad. Nauk SSSR, Volume 132 (1960) no. 2, pp. 283-286 (in Russian); Translation in Sov. Math. Dokl., 1, 1960, pp. 548-552
[20] A division theorem for analytic functions with a given majorant, and some of its applications, Zap. Nauč. Semin. POMI, Volume 56 (1976), pp. 73-89 (in Russian)
[21] A uniqueness theorem for harmonic functions, Mat. Zametki, Volume 3 (1968), pp. 247-252 (in Russian)
[22] On radial projection of harmonic measure (Marchenko, V.A., ed.), Operator Theory and Subharmonic Functions, Naukova Dumka, Kiev, 1991, pp. 95-102 (in Russian)
[23] Classical and new theorems, Expo. Math., Volume 27 (2009) no. 4, pp. 271-287
[24] On a growth condition related to the MacLane class, J. Lond. Math. Soc. (2), Volume 18 (1978) no. 1, pp. 94-100
[25] Generalized axially symmetric potential theory, Bull. Amer. Math. Soc., Volume 59 (1953) no. 1, pp. 20-38
Cité par Sources :