Soit une algèbre de von Neumann et soit , l'espace de Haagerup sur . On montre que les propriétés de différentiabilité de sont exactement les mêmes que celles obtenues sur les espaces classiques (commutatifs). Les ingrédients principaux sont les opérateurs intégraux multiples et les traces singulières.
Let be a von Neumann algebra and let , be Haagerup's -space on . We prove that the differentiability properties of are precisely the same as those of classical (commutative) -spaces. Our main instruments are multiple operator integrals and singular traces.
Accepté le :
Publié le :
@article{CRMATH_2014__352_11_923_0, author = {Potapov, Denis and Sukochev, Fedor and Tomskova, Anna and Zanin, Dmitriy}, title = {Fr\'echet differentiability of the norm of $ {L}_{p}$-spaces associated with arbitrary von {Neumann} algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {923--927}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.09.017}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.017/} }
TY - JOUR AU - Potapov, Denis AU - Sukochev, Fedor AU - Tomskova, Anna AU - Zanin, Dmitriy TI - Fréchet differentiability of the norm of $ {L}_{p}$-spaces associated with arbitrary von Neumann algebras JO - Comptes Rendus. Mathématique PY - 2014 SP - 923 EP - 927 VL - 352 IS - 11 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.09.017/ DO - 10.1016/j.crma.2014.09.017 LA - en ID - CRMATH_2014__352_11_923_0 ER -
%0 Journal Article %A Potapov, Denis %A Sukochev, Fedor %A Tomskova, Anna %A Zanin, Dmitriy %T Fréchet differentiability of the norm of $ {L}_{p}$-spaces associated with arbitrary von Neumann algebras %J Comptes Rendus. Mathématique %D 2014 %P 923-927 %V 352 %N 11 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.09.017/ %R 10.1016/j.crma.2014.09.017 %G en %F CRMATH_2014__352_11_923_0
Potapov, Denis; Sukochev, Fedor; Tomskova, Anna; Zanin, Dmitriy. Fréchet differentiability of the norm of $ {L}_{p}$-spaces associated with arbitrary von Neumann algebras. Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 923-927. doi : 10.1016/j.crma.2014.09.017. http://www.numdam.org/articles/10.1016/j.crma.2014.09.017/
[1] Operator integrals, spectral shift, and spectral flow, Can. J. Math., Volume 61 (2009) no. 2, pp. 241-263
[2] Double Stieltjes operator integrals, Problems of Mathematical Physics, Izdat. Leningrad. Univ., Leningrad, 1966, pp. 33-67 (in Russian). English translation in: Topics in Mathematical Physics, vol. 1, Consultants Bureau Plenum Publishing Corporation, New York, 1967, pp. 25–54
[3] Double Stieltjes operator integrals II, Problems of Mathematical Physics, vol. 2, Izdat. Leningrad. Univ., Leningrad, 1967, pp. 26-60 (in Russian). English translation in: Topics in Mathematical Physics, vol. 2, Consultants Bureau, New York, 1968, pp. 19–46
[4] Double Stieltjes operator integrals III, Problems of Mathematical Physics, vol. 6, Leningrad University, Leningrad, 1973, pp. 27-53 (in Russian)
[5] Smooth functions on Banach manifolds, J. Math. Mech., Volume 15 (1966) no. 5, pp. 877-898
[6] Differentiation of operator functions in non-commutative -spaces, J. Funct. Anal., Volume 212 (2004) no. 1, pp. 28-75
[7] Double operator integrals, J. Funct. Anal., Volume 192 (2002) no. 1, pp. 52-111
[8] Generalized s-numbers of τ-measurable operators, Pac. J. Math., Volume 123 (1986) no. 2, pp. 269-300
[9] -spaces associated with an arbitrary von Neumann algebra, Marseille (1977), pp. 175-184 (French summary: Algèbres d'opérateurs et leurs applications en physique mathématique)
[10] Fundamentals of the Theory of Operator Algebras, vol. II. Advanced Theory, Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL, USA, 1986 (pp. ixiv and 399–1074)
[11] Singular Traces: Theory and Applications, Studies in Mathematics, vol. 46, De Gruyter, 2012
[12] Elements of Functional Analysis, Frederick Ungar Publishing Co., New York, 1961 (Translated from Russian)
[13] Multiple operator integrals and higher operator derivatives, J. Funct. Anal., Volume 233 (2006) no. 2, pp. 515-544
[14] (Handbook of the Geometry of Banach Spaces), Volume vol. 2, North-Holland, Amsterdam (2003), pp. 1459-1517
[15] Fréchet differentiability of norms, Adv. Math., Volume 262 (2014), pp. 436-475
[16] Spectral shift function of higher order, Invent. Math., Volume 193 (2013) no. 3, pp. 501-538
[17] Smooth Banach spaces, Math. Ann., Volume 173 (1967), pp. 191-199
[18] spaces associated with von Neumann algebras, Math. Institute, Copenhagen University, 1981 (Notes)
[19] A simple natural approach to the Uniform Boundedness Principle for multilinear mappings, Proyecciones, Volume 28 (2009) no. 3, pp. 203-207
[20] On the differentiability of the norm in trace classes , Séminaire Maurey–Schwartz 1974–1975: Espaces Lp$ {L}^{p}$, Applications radonifiantes et géométrie des espaces de Banach, Exp. No. XXII, Centre de mathématiques de l'École polytechnique, Paris, 1975
Cité par Sources :