Soit
Let
Accepté le :
Publié le :
@article{CRMATH_2014__352_11_923_0, author = {Potapov, Denis and Sukochev, Fedor and Tomskova, Anna and Zanin, Dmitriy}, title = {Fr\'echet differentiability of the norm of $ {L}_{p}$-spaces associated with arbitrary von {Neumann} algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {923--927}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.09.017}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2014.09.017/} }
TY - JOUR AU - Potapov, Denis AU - Sukochev, Fedor AU - Tomskova, Anna AU - Zanin, Dmitriy TI - Fréchet differentiability of the norm of $ {L}_{p}$-spaces associated with arbitrary von Neumann algebras JO - Comptes Rendus. Mathématique PY - 2014 SP - 923 EP - 927 VL - 352 IS - 11 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.09.017/ DO - 10.1016/j.crma.2014.09.017 LA - en ID - CRMATH_2014__352_11_923_0 ER -
%0 Journal Article %A Potapov, Denis %A Sukochev, Fedor %A Tomskova, Anna %A Zanin, Dmitriy %T Fréchet differentiability of the norm of $ {L}_{p}$-spaces associated with arbitrary von Neumann algebras %J Comptes Rendus. Mathématique %D 2014 %P 923-927 %V 352 %N 11 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2014.09.017/ %R 10.1016/j.crma.2014.09.017 %G en %F CRMATH_2014__352_11_923_0
Potapov, Denis; Sukochev, Fedor; Tomskova, Anna; Zanin, Dmitriy. Fréchet differentiability of the norm of $ {L}_{p}$-spaces associated with arbitrary von Neumann algebras. Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 923-927. doi : 10.1016/j.crma.2014.09.017. https://www.numdam.org/articles/10.1016/j.crma.2014.09.017/
[1] Operator integrals, spectral shift, and spectral flow, Can. J. Math., Volume 61 (2009) no. 2, pp. 241-263
[2] Double Stieltjes operator integrals, Problems of Mathematical Physics, Izdat. Leningrad. Univ., Leningrad, 1966, pp. 33-67 (in Russian). English translation in: Topics in Mathematical Physics, vol. 1, Consultants Bureau Plenum Publishing Corporation, New York, 1967, pp. 25–54
[3] Double Stieltjes operator integrals II, Problems of Mathematical Physics, vol. 2, Izdat. Leningrad. Univ., Leningrad, 1967, pp. 26-60 (in Russian). English translation in: Topics in Mathematical Physics, vol. 2, Consultants Bureau, New York, 1968, pp. 19–46
[4] Double Stieltjes operator integrals III, Problems of Mathematical Physics, vol. 6, Leningrad University, Leningrad, 1973, pp. 27-53 (in Russian)
[5] Smooth functions on Banach manifolds, J. Math. Mech., Volume 15 (1966) no. 5, pp. 877-898
[6] Differentiation of operator functions in non-commutative
[7] Double operator integrals, J. Funct. Anal., Volume 192 (2002) no. 1, pp. 52-111
[8] Generalized s-numbers of τ-measurable operators, Pac. J. Math., Volume 123 (1986) no. 2, pp. 269-300
[9]
[10] Fundamentals of the Theory of Operator Algebras, vol. II. Advanced Theory, Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL, USA, 1986 (pp. ixiv and 399–1074)
[11] Singular Traces: Theory and Applications, Studies in Mathematics, vol. 46, De Gruyter, 2012
[12] Elements of Functional Analysis, Frederick Ungar Publishing Co., New York, 1961 (Translated from Russian)
[13] Multiple operator integrals and higher operator derivatives, J. Funct. Anal., Volume 233 (2006) no. 2, pp. 515-544
[14] (Handbook of the Geometry of Banach Spaces), Volume vol. 2, North-Holland, Amsterdam (2003), pp. 1459-1517
[15] Fréchet differentiability of
[16] Spectral shift function of higher order, Invent. Math., Volume 193 (2013) no. 3, pp. 501-538
[17] Smooth Banach spaces, Math. Ann., Volume 173 (1967), pp. 191-199
[18]
[19] A simple natural approach to the Uniform Boundedness Principle for multilinear mappings, Proyecciones, Volume 28 (2009) no. 3, pp. 203-207
[20] On the differentiability of the norm in trace classes
Cité par Sources :