Complex analysis
On the class of bi-univalent functions
[Sur la classe des fonctions bi-univalentes]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 895-900.

Dans une tentative de répondre à une question posée par A.W. Goodman, nous obtenons des théorèmes de surjectivité, de déformation et de croissance, ainsi qu'une estimation du rayon de convexité et de l'argument de f(z) pour une fonction f dans la classe σ des fonctions bi-univalentes.

In an attempt to answer the question raised by A.W. Goodman, we obtain a covering theorem, a distortion theorem, a growth theorem, the radius of convexity and an argument estimate of f(z) for functions of the class σ of bi-univalent functions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.09.015
Sivasubramanian, Srikandan 1 ; Sivakumar, Radhakrishnan 1 ; Bulboacă, Teodor 2 ; Shanmugam, Tirunelveli Nellaiappar 3

1 Department of Mathematics, University College of Engineering Tindivanam, Anna University, Chennai, Tindivanam, 604 001, India
2 Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
3 Department of Mathematics, University College of Engineering, Kanchipuram, Anna University, Chennai, Kanchipuram, 631 552, India
@article{CRMATH_2014__352_11_895_0,
     author = {Sivasubramanian, Srikandan and Sivakumar, Radhakrishnan and Bulboac\u{a}, Teodor and Shanmugam, Tirunelveli Nellaiappar},
     title = {On the class of bi-univalent functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {895--900},
     publisher = {Elsevier},
     volume = {352},
     number = {11},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.015/}
}
TY  - JOUR
AU  - Sivasubramanian, Srikandan
AU  - Sivakumar, Radhakrishnan
AU  - Bulboacă, Teodor
AU  - Shanmugam, Tirunelveli Nellaiappar
TI  - On the class of bi-univalent functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 895
EP  - 900
VL  - 352
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.09.015/
DO  - 10.1016/j.crma.2014.09.015
LA  - en
ID  - CRMATH_2014__352_11_895_0
ER  - 
%0 Journal Article
%A Sivasubramanian, Srikandan
%A Sivakumar, Radhakrishnan
%A Bulboacă, Teodor
%A Shanmugam, Tirunelveli Nellaiappar
%T On the class of bi-univalent functions
%J Comptes Rendus. Mathématique
%D 2014
%P 895-900
%V 352
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.09.015/
%R 10.1016/j.crma.2014.09.015
%G en
%F CRMATH_2014__352_11_895_0
Sivasubramanian, Srikandan; Sivakumar, Radhakrishnan; Bulboacă, Teodor; Shanmugam, Tirunelveli Nellaiappar. On the class of bi-univalent functions. Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 895-900. doi : 10.1016/j.crma.2014.09.015. http://www.numdam.org/articles/10.1016/j.crma.2014.09.015/

[1] Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramanian, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 344-351

[2] Aspects of Contemporary Complex Analysis (Brannan, D.A.; Clunie, J.G., eds.), Academic Press, London, 1980

[3] Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions, Stud. Univ. Babeş–Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77

[4] Duren, P. Univalent Functions, Grundlehren der Mathematischen Wissenchaften, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983

[5] Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011) no. 9, pp. 1569-1573

[6] Goodman, A.W. An invitation to the study of univalent and multivalent functions, Int. J. Math. Math. Sci., Volume 2 (1979) no. 2, pp. 163-186

[7] Goodman, A.W. Univalent Functions, vol. I, Mariner Publishing Company Inc., 1983

[8] Goyal, S.P.; Goswami, P. Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egypt. Math. Soc., Volume 20 (2012), pp. 179-182

[9] Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions, Panamer. Math. J., Volume 22 (2012) no. 4, pp. 15-26

[10] Lewin, M. On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68

[11] Li, X.-F.; Wang, A.-P. Two new subclasses of bi-univalent functions, Int. Math. Forum, Volume 7 (2012), pp. 1495-1504

[12] Privalov, J. Sur les fonctions qui donnent la représentation conforme biunivoque, Rec. Math. D. I. Soc. Math. D. Moscou, Volume 31 (1924), pp. 350-365

[13] S. Sivaprasad Kumar, V. Kumar, V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Preprint.

[14] Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010) no. 10, pp. 1188-1192

[15] Xu, Q.-H.; Gui, Y.-C.; Srivastava, H.M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., Volume 25 (2012) no. 6, pp. 990-994

[16] Xu, Q.-H.; Srivastava, H.M.; Li, Z. A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett., Volume 24 (2011), pp. 396-401

[17] Xu, Q.-H.; Xiao, H.-G.; Srivastava, H.M. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., Volume 218 (2012) no. 23, pp. 11461-11465

Cité par Sources :