Nous présentons deux démonstrations de la nullité de
We present two proofs that for a smooth projective separably rationally connected variety over an algebraically closed field
Accepté le :
Publié le :
@article{CRMATH_2014__352_11_871_0, author = {Gounelas, Frank}, title = {The first cohomology of separably rationally connected varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {871--873}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.09.013}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2014.09.013/} }
TY - JOUR AU - Gounelas, Frank TI - The first cohomology of separably rationally connected varieties JO - Comptes Rendus. Mathématique PY - 2014 SP - 871 EP - 873 VL - 352 IS - 11 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.09.013/ DO - 10.1016/j.crma.2014.09.013 LA - en ID - CRMATH_2014__352_11_871_0 ER -
%0 Journal Article %A Gounelas, Frank %T The first cohomology of separably rationally connected varieties %J Comptes Rendus. Mathématique %D 2014 %P 871-873 %V 352 %N 11 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2014.09.013/ %R 10.1016/j.crma.2014.09.013 %G en %F CRMATH_2014__352_11_871_0
Gounelas, Frank. The first cohomology of separably rationally connected varieties. Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 871-873. doi : 10.1016/j.crma.2014.09.013. https://www.numdam.org/articles/10.1016/j.crma.2014.09.013/
[1] I. Biswas, J.P.P. dos Santos, Triviality criteria for vector bundles over rationally connected varieties, Preprint, 2011.
[2] Feodor A. Bogomolov, Michael L. MacQuillan, Rational curves on foliated varieties, IHES, Preprint, 2001.
[3] Points rationnels et groupes fondamentaux: applications de la cohomologie p-adique, Astérisque, Volume 294 (2004), pp. 125-146 (d'après P. Berthelot, T. Ekedahl, H. Esnault, etc.)
[4] Étale p-covers in characteristic p, Compos. Math., Volume 52 (1984) no. 1, pp. 31-45
[5] Variétés rationnellement connexes, Séminaire Bourbaki, vols. 2001/2002 (Astérisque), Volume 290 (2003) no. 2003, pp. 243-266 (d'après T. Graber, J. Harris, J. Starr et A.J. de Jong)
[6] Free curves on varieties, 2012 (Preprint) | arXiv
[7] Rationally connected foliations after Bogomolov and McQuillan, J. Algebr. Geom., Volume 16 (2007) no. 1, pp. 65-81
[8] Nonrational hypersurfaces, J. Amer. Math. Soc., Volume 8 (1995) no. 1, pp. 241-249
[9] Rational Curves on Algebraic Varieties, Ergeb. Math. Ihrer Grenzgeb. 3. Folge, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996
[10] Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, UK, 2013 (with a collaboration of Sándor Kovács)
[11] On the fundamental group of a unirational 3-fold, Invent. Math., Volume 44 (1978) no. 1, pp. 75-86
[12] Fano threefolds in positive characteristic, Compos. Math., Volume 105 (1997) no. 3, pp. 237-265
[13] A note on the fundamental group of a unirational variety, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 59 (1983) no. 3, pp. 98-99
[14] Yi Zhu, Fano hypersurfaces in positive characteristic, Preprint, 2011.
Cité par Sources :