Le quotient d'une paire d'algébroïdes de Lie est un objet algèbre de Lie dans la catégorie dérivée de la catégorie des modules à gauche sur . Dans cette note, nous décrivons l'algèbre enveloppante universelle de l'objet algèbre de Lie et nous prouvons que celle-ci constitue un objet algèbre de Hopf dans .
The quotient of a pair of Lie algebroids is a Lie algebra object in the derived category of the category of left -modules, the Atiyah class being its Lie bracket. In this note, we describe the universal enveloping algebra of the Lie algebra object and we prove that it is a Hopf algebra object in .
Accepté le :
Publié le :
@article{CRMATH_2014__352_11_929_0, author = {Chen, Zhuo and Sti\'enon, Mathieu and Xu, Ping}, title = {A {Hopf} algebra associated with a {Lie} pair}, journal = {Comptes Rendus. Math\'ematique}, pages = {929--933}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.09.010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.010/} }
TY - JOUR AU - Chen, Zhuo AU - Stiénon, Mathieu AU - Xu, Ping TI - A Hopf algebra associated with a Lie pair JO - Comptes Rendus. Mathématique PY - 2014 SP - 929 EP - 933 VL - 352 IS - 11 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.09.010/ DO - 10.1016/j.crma.2014.09.010 LA - en ID - CRMATH_2014__352_11_929_0 ER -
%0 Journal Article %A Chen, Zhuo %A Stiénon, Mathieu %A Xu, Ping %T A Hopf algebra associated with a Lie pair %J Comptes Rendus. Mathématique %D 2014 %P 929-933 %V 352 %N 11 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.09.010/ %R 10.1016/j.crma.2014.09.010 %G en %F CRMATH_2014__352_11_929_0
Chen, Zhuo; Stiénon, Mathieu; Xu, Ping. A Hopf algebra associated with a Lie pair. Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 929-933. doi : 10.1016/j.crma.2014.09.010. http://www.numdam.org/articles/10.1016/j.crma.2014.09.010/
[1] From Atiyah classes to homotopy Leibniz algebras, 2012 | arXiv
[2] Rozansky–Witten invariants via Atiyah classes, Compos. Math., Volume 115 (1999) no. 1, pp. 71-113 MR 1671737 (2000h:57056)
[3] The cyclic theory of Hopf algebroids, J. Noncommut. Geom., Volume 5 (2011) no. 3, pp. 423-476 MR 2817646 (2012f:16081)
[4] Dirac structures and Poisson homogeneous spaces, Commun. Math. Phys., Volume 192 (1998) no. 1, pp. 121-144 MR 1612164 (99g:58053)
[5] The Atiyah class, Hochschild cohomology and the Riemann–Roch theorem, J. Lond. Math. Soc. (2), Volume 79 (2009) no. 1, pp. 129-143 MR 2472137 (2010d:14020)
[6] The big Chern classes and the Chern character, Int. J. Math., Volume 19 (2008) no. 6, pp. 699-746 MR 2431634 (2010h:14028)
[7] On the Rozansky–Witten weight systems, Algebr. Geom. Topol., Volume 10 (2010) no. 3, pp. 1455-1519 (MR 2661534)
[8] Hyper–Kähler geometry and invariants of three-manifolds, Sel. Math. New Ser., Volume 3 (1997) no. 3, pp. 401-458 MR 1481135 (98m:57041)
[9] Quantum groupoids, Commun. Math. Phys., Volume 216 (2001) no. 3, pp. 539-581 MR 1815717 (2002f:17033)
Cité par Sources :
☆ Research partially supported by NSF grant DMS1101827, NSA grant H98230-12-1-0234, and NSFC grants 11001146 and 11471179.