Nous étudions des sous-ensembles complets et compacts pour le bas, le haut et les topologies symétriques d'un cône localement convexe, et prouvons que les ensembles faiblement fermés sont faiblement compacts à chaque fois qu'ils sont faiblement précompacts. Cela conduit à la faible* compacité des polaires des quartiers et à la faible compacité des quartiers inférieur, supérieur et symétrique.
We investigate complete and compact subsets for the lower, upper and symmetric topologies of a locally convex cone and prove that weakly closed sets will be weakly compact, whenever they are weakly precompact. This leads to the weak* compactness of the polars of neighborhoods and weak compactness of the lower, upper and symmetric neighborhoods.
Accepté le :
Publié le :
@article{CRMATH_2014__352_10_785_0, author = {Motallebi, Mohammad Reza}, title = {Completeness on locally convex cones}, journal = {Comptes Rendus. Math\'ematique}, pages = {785--789}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.09.005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.005/} }
TY - JOUR AU - Motallebi, Mohammad Reza TI - Completeness on locally convex cones JO - Comptes Rendus. Mathématique PY - 2014 SP - 785 EP - 789 VL - 352 IS - 10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.09.005/ DO - 10.1016/j.crma.2014.09.005 LA - en ID - CRMATH_2014__352_10_785_0 ER -
Motallebi, Mohammad Reza. Completeness on locally convex cones. Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 785-789. doi : 10.1016/j.crma.2014.09.005. http://www.numdam.org/articles/10.1016/j.crma.2014.09.005/
[1] Ordered Cones and Approximation, Lect. Notes Math., vol. 1517, Springer Verlag, Heidelberg, Berlin, New York, 1992
[2] Duality on locally convex cones, J. Math. Anal. Appl., Volume 337 (2008), pp. 888-905
[3] Products and direct sums in locally convex cones, Can. Math. Bull., Volume 55 (2012) no. 4, pp. 783-798
[4] Locally convex lattice cones, J. Convex Anal., Volume 16 (2009), pp. 1-31
[5] Operator-Valued Measures and Integrals for Cone-Valued Functions, Lect. Notes Math., vol. 1964, Springer Verlag, Heidelberg, Berlin, New York, 2009
[6] General Topology, Addison-Wesley, Reading, 1970
Cité par Sources :