Nous démontrons que le produit ponctuel de deux fonctions holomorphes du demi-plan supérieur, l'une dans l'espace de Hardy , l'autre dans son dual, appartiennent à un espace de type Hardy. À l'inverse, chaque fonction holomorphe de cet espace peut s'écrire sous la forme d'un tel produit. Ceci généralise un résultat connu dans le cas du disque unité.
We prove that the pointwise product of two holomorphic functions of the upper half-plane, one in the Hardy space , the other one in its dual, belongs to a Hardy-type space. Conversely, every holomorphic function in this space can be written as such a product. This generalizes a previous characterization in the context of the unit disc.
Accepté le :
Publié le :
@article{CRMATH_2014__352_10_817_0, author = {Bonami, Aline and Ky, Luong Dang}, title = {Factorization of some {Hardy-type} spaces of holomorphic functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {817--821}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.09.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.004/} }
TY - JOUR AU - Bonami, Aline AU - Ky, Luong Dang TI - Factorization of some Hardy-type spaces of holomorphic functions JO - Comptes Rendus. Mathématique PY - 2014 SP - 817 EP - 821 VL - 352 IS - 10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.09.004/ DO - 10.1016/j.crma.2014.09.004 LA - en ID - CRMATH_2014__352_10_817_0 ER -
%0 Journal Article %A Bonami, Aline %A Ky, Luong Dang %T Factorization of some Hardy-type spaces of holomorphic functions %J Comptes Rendus. Mathématique %D 2014 %P 817-821 %V 352 %N 10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.09.004/ %R 10.1016/j.crma.2014.09.004 %G en %F CRMATH_2014__352_10_817_0
Bonami, Aline; Ky, Luong Dang. Factorization of some Hardy-type spaces of holomorphic functions. Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 817-821. doi : 10.1016/j.crma.2014.09.004. http://www.numdam.org/articles/10.1016/j.crma.2014.09.004/
[1] Hankel operators and weak factorization for Hardy–Orlicz spaces, Colloq. Math., Volume 118 (2010) no. 1, pp. 107-132
[2] Paraproducts and products of functions in and through wavelets, J. Math. Pures Appl. (9), Volume 97 (2012) no. 3, pp. 230-241
[3] A. Bonami, S. Grellier, L.D. Ky, Hardy spaces of Musielak–Orlicz type on the half-plane, preprint.
[4] On the product of functions in BMO and , Ann. Inst. Fourier (Grenoble), Volume 57 (2007) no. 5, pp. 1405-1439
[5] Riesz transform characterizations of Musielak–Orlicz–Hardy spaces Trans. Amer. Math. Soc. (to appear) or | arXiv
[6] Another characterization of BMO, Proc. Amer. Math. Soc., Volume 79 (1980) no. 2, pp. 249-254
[7] Bounded Analytic Functions, Academic Press, New York, 1981
[8] Bilinear decompositions and commutators of singular integral operators, Trans. Amer. Math. Soc., Volume 365 (2013) no. 6, pp. 2931-2958
[9] New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators, Integral Equ. Oper. Theory, Volume 78 (2014) no. 1, pp. 115-150
[10] New real-variable characterizations of Musielak–Orlicz Hardy spaces, J. Math. Anal. Appl., Volume 395 (2012) no. 1, pp. 413-428
Cité par Sources :