Partial differential equations
A note on the existence of extension operators for Sobolev spaces on periodic domains
[Une note sur l'existence d'opérateurs d'extension pour les espaces de Sobolev sur des domaines périodiques]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 807-810.

Dans cette note, nous prouvons l'existence d'une famile d'opérateurs d'extension pour les espaces de Sobolev définis sur des domaines ε-périodiques. Nous montrons que les normes de ces opérateurs sont indépendantes de ε. Ce théorème est pertinent dans la théorie de l'homogénéisation des EDP avec des conditions aux limites de flux.

In this note, we prove the existence of a family of extension operators for Sobolev spaces defined on ε-periodic domains. The norms of the operators are shown to be independent of ε. This extension theorem is relevant in the theory of homogenization for PDE's under flux boundary conditions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.09.002
Höpker, Martin 1 ; Böhm, Michael 1

1 Center for Industrial Mathematics, FB 3, University of Bremen, Postfach 33 04 40, 28334 Bremen, Germany
@article{CRMATH_2014__352_10_807_0,
     author = {H\"opker, Martin and B\"ohm, Michael},
     title = {A note on the existence of extension operators for {Sobolev} spaces on periodic domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {807--810},
     publisher = {Elsevier},
     volume = {352},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.002/}
}
TY  - JOUR
AU  - Höpker, Martin
AU  - Böhm, Michael
TI  - A note on the existence of extension operators for Sobolev spaces on periodic domains
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 807
EP  - 810
VL  - 352
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.09.002/
DO  - 10.1016/j.crma.2014.09.002
LA  - en
ID  - CRMATH_2014__352_10_807_0
ER  - 
%0 Journal Article
%A Höpker, Martin
%A Böhm, Michael
%T A note on the existence of extension operators for Sobolev spaces on periodic domains
%J Comptes Rendus. Mathématique
%D 2014
%P 807-810
%V 352
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.09.002/
%R 10.1016/j.crma.2014.09.002
%G en
%F CRMATH_2014__352_10_807_0
Höpker, Martin; Böhm, Michael. A note on the existence of extension operators for Sobolev spaces on periodic domains. Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 807-810. doi : 10.1016/j.crma.2014.09.002. http://www.numdam.org/articles/10.1016/j.crma.2014.09.002/

[1] Acerbi, E.; Chiadò Piat, V.; Dal Maso, G.; Percivale, D. An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., Volume 18 (1992), pp. 481-496

[2] Bear, J.; Bachmat, Y. Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, 1990

[3] Cagnetti, F.; Scardia, L. An extension theorem in SBV and an application to the homogenization of the Mumford–Shah functional in perforated domains, J. Math. Pures Appl., Volume 95 (2011), pp. 349-381

[4] Cioranescu, D.; Saint, J.; Paulin, Jean Homogenization of Reticulated Structures, Applied Mathematical Sciences, vol. 136, Springer, 1999

[5] Mabrouk, M.; Hassan, S. Homogenization of a composite medium with a thermal barrier, Math. Methods Appl. Sci., Volume 27 (2004), pp. 405-425

[6] Mahato, H.S. Homogenization of a system of nonlinear multi-species diffusion–reaction equations in an H1,p setting, University of Bremen, Germany, 2013 (Ph.D. thesis)

[7] Miller, R. Extension theorems for homogenization on lattice structures, Appl. Math. Lett., Volume 5 (1992), pp. 73-78

[8] Timofte, C. Homogenization results for enzyme catalyzed reactions through porous media, Acta Math. Sci. Ser. B, Volume 29 (2009), pp. 74-82

Cité par Sources :