On demontre l'existence d'un sous-ensemble convexe compact dans une variété quasi-fuchsienne tel que la métrique induite de bord du sous-ensemble soit une métrique polyèdrale hyperbolique prescrite.
We show the existence of a convex compact subset in a quasi-Fuchsian manifold such that the induced metric on the boundary of the subset coincides with a prescribed hyperbolic polyhedral metric.
Accepté le :
Publié le :
@article{CRMATH_2014__352_10_831_0, author = {Slutskiy, Dmitriy}, title = {Polyhedral metrics on the boundaries of convex compact {quasi-Fuchsian} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {831--834}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.09.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.001/} }
TY - JOUR AU - Slutskiy, Dmitriy TI - Polyhedral metrics on the boundaries of convex compact quasi-Fuchsian manifolds JO - Comptes Rendus. Mathématique PY - 2014 SP - 831 EP - 834 VL - 352 IS - 10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.09.001/ DO - 10.1016/j.crma.2014.09.001 LA - en ID - CRMATH_2014__352_10_831_0 ER -
%0 Journal Article %A Slutskiy, Dmitriy %T Polyhedral metrics on the boundaries of convex compact quasi-Fuchsian manifolds %J Comptes Rendus. Mathématique %D 2014 %P 831-834 %V 352 %N 10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.09.001/ %R 10.1016/j.crma.2014.09.001 %G en %F CRMATH_2014__352_10_831_0
Slutskiy, Dmitriy. Polyhedral metrics on the boundaries of convex compact quasi-Fuchsian manifolds. Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 831-834. doi : 10.1016/j.crma.2014.09.001. http://www.numdam.org/articles/10.1016/j.crma.2014.09.001/
[1] Complete convex surfaces in Lobachevskian space, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 9 (1945), pp. 113-120
[2] Intrinsic Geometry of Convex Surfaces, Selected Works: Part II, Chapman and Hall/CRC, Berlin, 2006
[3] Notes on notes of Thurston, Fundamentals of Hyperbolic Geometry: Selected Expositions, London Math. Soc. Lecture Note Ser., vol. 328, 2006, pp. 1-115
[4] Métriques prescrites sur le bord des variétés hyperboliques de dimension 3, J. Differ. Geom., Volume 35 (1992), pp. 609-626
[5] Les géodésiques fermées d'une variété hyperbolique en tant que nœuds, Warwick, 2001 (London Math. Soc. Lecture Note Ser.), Volume vol. 299 (2003), pp. 95-104
[6] Hyperbolic manifolds with convex boundary, Invent. Math., Volume 163 (2006), pp. 109-169
[7] Métriques polyédrales sur les bords de variétés hyperboliques convexes et flexibilité des polyèdres hyperboliques, Université Paul-Sabatier, Toulouse, France, 2013 (PhD thesis)
Cité par Sources :