Partial differential equations
Exponential self-similar mixing and loss of regularity for continuity equations
[Mélange auto-similaire exponentiel et perte de régularité pour l'équation de continuité]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 901-906.

Nous étudions le comportement de mélange de solutions de l'équation de continuité associée à un champ de vitesse à divergence nulle. Dans cette note, nous décrivons deux exemples explicites de décroissance exponentielle de l'échelle de mélange de la solution. Dans le cas des champs de vitesse Sobolev, nous montrons donc l'optimalité des estimations par dessous connues. Nous décrivons aussi comment utiliser de tels exemples pour construire des solutions de l'équation de continuité à champs de vitesse Sobolev mais non lipschitziens : ces solutions perdent immédiatement toute régularité Sobolev fractionnaire.

We consider the mixing behavior of the solutions to the continuity equation associated with a divergence-free velocity field. In this Note, we sketch two explicit examples of exponential decay of the mixing scale of the solution, in case of Sobolev velocity fields, thus showing the optimality of known lower bounds. We also describe how to use such examples to construct solutions to the continuity equation with Sobolev but non-Lipschitz velocity field exhibiting instantaneous loss of any fractional Sobolev regularity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.08.021
Alberti, Giovanni 1 ; Crippa, Gianluca 2 ; Mazzucato, Anna L. 3

1 Dipartimento di Matematica, Università di Pisa, largo Pontecorvo 5, 56127 Pisa, Italy
2 Departement Mathematik und Informatik, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland
3 Department of Mathematics, Penn State University, McAllister Building, University Park, PA 16802, USA
@article{CRMATH_2014__352_11_901_0,
     author = {Alberti, Giovanni and Crippa, Gianluca and Mazzucato, Anna L.},
     title = {Exponential self-similar mixing and loss of regularity for continuity equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {901--906},
     publisher = {Elsevier},
     volume = {352},
     number = {11},
     year = {2014},
     doi = {10.1016/j.crma.2014.08.021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.08.021/}
}
TY  - JOUR
AU  - Alberti, Giovanni
AU  - Crippa, Gianluca
AU  - Mazzucato, Anna L.
TI  - Exponential self-similar mixing and loss of regularity for continuity equations
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 901
EP  - 906
VL  - 352
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.08.021/
DO  - 10.1016/j.crma.2014.08.021
LA  - en
ID  - CRMATH_2014__352_11_901_0
ER  - 
%0 Journal Article
%A Alberti, Giovanni
%A Crippa, Gianluca
%A Mazzucato, Anna L.
%T Exponential self-similar mixing and loss of regularity for continuity equations
%J Comptes Rendus. Mathématique
%D 2014
%P 901-906
%V 352
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.08.021/
%R 10.1016/j.crma.2014.08.021
%G en
%F CRMATH_2014__352_11_901_0
Alberti, Giovanni; Crippa, Gianluca; Mazzucato, Anna L. Exponential self-similar mixing and loss of regularity for continuity equations. Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 901-906. doi : 10.1016/j.crma.2014.08.021. http://www.numdam.org/articles/10.1016/j.crma.2014.08.021/

[1] Alberti, G.; Bianchini, S.; Crippa, G. Structure of level sets and Sard-type properties of Lipschitz maps, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 12 (2013) no. 4, pp. 863-902

[2] Alberti, G.; Bianchini, S.; Crippa, G. A uniqueness result for the continuity equation in two dimensions, J. Eur. Math. Soc., Volume 16 (2014) no. 2, pp. 201-234

[3] Ambrosio, L. Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227-260

[4] Bouchut, F.; Crippa, G. Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperbolic Differ. Equ., Volume 10 (2013) no. 2, pp. 235-282

[5] Bressan, A. A lemma and a conjecture on the cost of rearrangements, Rend. Semin. Mat. Univ. Padova, Volume 110 (2003), pp. 97-102

[6] Crippa, G.; De Lellis, C. Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15-46

[7] Depauw, N. Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 4, pp. 249-252

[8] DiPerna, R.J.; Lions, P.-L. Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547

[9] Iyer, G.; Kiselev, A.; Xu, X. Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows, Nonlinearity, Volume 27 (2014) no. 5, pp. 973-985

[10] Lin, Z.; Thiffeault, J.-L.; Doering, C.R. Optimal stirring strategies for passive scalar mixing, J. Fluid Mech., Volume 675 (2011), pp. 465-476

[11] Lunasin, E.; Lin, Z.; Novikov, A.; Mazzucato, A.; Doering, C.R. Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy flows, J. Math. Phys., Volume 53 (2012) no. 11, p. 115611 (15)

[12] Mathew, G.; Mezic, I.; Petzold, L. A multiscale measure for mixing, Physica D, Volume 211 (2005) no. 1–2, pp. 23-46

[13] Seis, C. Maximal mixing by incompressible fluid flows, Nonlinearity, Volume 26 (2013) no. 12, pp. 3279-3289

[14] Yao, Y.; Zlatoš, A. Mixing and un-mixing by incompressible flows, 2014 | arXiv

Cité par Sources :