Number theory/Geometry
A volume estimate for the set of stable lattices
[Une estimation du volume de l'ensemble des réseaux stables]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 875-879.

Nous montrons qu'en grande dimension, l'ensemble des réseaux stables est de mesure presque pleine dans l'espace des réseaux unimodulaires.

We show that in high dimensions the set of stable lattices is almost of full measure in the space of unimodular lattices.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.08.019
Shapira, Uri 1 ; Weiss, Barak 2

1 Dept. of Mathematics, Technion, Haifa, Israel
2 Dept. of Mathematics, Tel Aviv University, Tel Aviv, Israel
@article{CRMATH_2014__352_11_875_0,
     author = {Shapira, Uri and Weiss, Barak},
     title = {A volume estimate for the set of stable lattices},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {875--879},
     publisher = {Elsevier},
     volume = {352},
     number = {11},
     year = {2014},
     doi = {10.1016/j.crma.2014.08.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.08.019/}
}
TY  - JOUR
AU  - Shapira, Uri
AU  - Weiss, Barak
TI  - A volume estimate for the set of stable lattices
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 875
EP  - 879
VL  - 352
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.08.019/
DO  - 10.1016/j.crma.2014.08.019
LA  - en
ID  - CRMATH_2014__352_11_875_0
ER  - 
%0 Journal Article
%A Shapira, Uri
%A Weiss, Barak
%T A volume estimate for the set of stable lattices
%J Comptes Rendus. Mathématique
%D 2014
%P 875-879
%V 352
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.08.019/
%R 10.1016/j.crma.2014.08.019
%G en
%F CRMATH_2014__352_11_875_0
Shapira, Uri; Weiss, Barak. A volume estimate for the set of stable lattices. Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 875-879. doi : 10.1016/j.crma.2014.08.019. http://www.numdam.org/articles/10.1016/j.crma.2014.08.019/

[1] U. Shapira, B. Weiss, Stable lattices and the diagonal group, J. Eur. Math. Soc., submitted for publication.

[2] Siegel, C.L. A mean value theorem in geometry of numbers, Ann. Math. (2), Volume 46 (1945), pp. 340-347 MR0012093 (6,257b)

[3] Södergren, A. On the distribution of angles between the N shortest vectors in a random lattice, J. Lond. Math. Soc. (2), Volume 84 (2011) no. 3, pp. 749-764 (MR2855800) | DOI

[4] Strömbergsson, A. On the limit distribution of Frobenius numbers, Acta Arith., Volume 152 (2012) no. 1, pp. 81-107 (MR2869212) | DOI

[5] Thunder, J.L. Higher-dimensional analogs of Hermite's constant, Mich. Math. J., Volume 45 (1998) no. 2, pp. 301-314

[6] Weil, A. Adeles and algebraic groups, Prog. Math., vol. 23, Birkhäuser, Boston, Maas., 1982 With appendices by M. Demazure and Takashi Ono. MR670072 (83m:10032)

Cité par Sources :