Nous montrons qu'en grande dimension, l'ensemble des réseaux stables est de mesure presque pleine dans l'espace des réseaux unimodulaires.
We show that in high dimensions the set of stable lattices is almost of full measure in the space of unimodular lattices.
Accepté le :
Publié le :
@article{CRMATH_2014__352_11_875_0, author = {Shapira, Uri and Weiss, Barak}, title = {A volume estimate for the set of stable lattices}, journal = {Comptes Rendus. Math\'ematique}, pages = {875--879}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.08.019}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.08.019/} }
TY - JOUR AU - Shapira, Uri AU - Weiss, Barak TI - A volume estimate for the set of stable lattices JO - Comptes Rendus. Mathématique PY - 2014 SP - 875 EP - 879 VL - 352 IS - 11 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.08.019/ DO - 10.1016/j.crma.2014.08.019 LA - en ID - CRMATH_2014__352_11_875_0 ER -
%0 Journal Article %A Shapira, Uri %A Weiss, Barak %T A volume estimate for the set of stable lattices %J Comptes Rendus. Mathématique %D 2014 %P 875-879 %V 352 %N 11 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.08.019/ %R 10.1016/j.crma.2014.08.019 %G en %F CRMATH_2014__352_11_875_0
Shapira, Uri; Weiss, Barak. A volume estimate for the set of stable lattices. Comptes Rendus. Mathématique, Tome 352 (2014) no. 11, pp. 875-879. doi : 10.1016/j.crma.2014.08.019. http://www.numdam.org/articles/10.1016/j.crma.2014.08.019/
[1] U. Shapira, B. Weiss, Stable lattices and the diagonal group, J. Eur. Math. Soc., submitted for publication.
[2] A mean value theorem in geometry of numbers, Ann. Math. (2), Volume 46 (1945), pp. 340-347 MR0012093 (6,257b)
[3] On the distribution of angles between the N shortest vectors in a random lattice, J. Lond. Math. Soc. (2), Volume 84 (2011) no. 3, pp. 749-764 (MR2855800) | DOI
[4] On the limit distribution of Frobenius numbers, Acta Arith., Volume 152 (2012) no. 1, pp. 81-107 (MR2869212) | DOI
[5] Higher-dimensional analogs of Hermite's constant, Mich. Math. J., Volume 45 (1998) no. 2, pp. 301-314
[6] Adeles and algebraic groups, Prog. Math., vol. 23, Birkhäuser, Boston, Maas., 1982 With appendices by M. Demazure and Takashi Ono. MR670072 (83m:10032)
Cité par Sources :