Nous prolongeons le développement, commencé en [8], de la description asymptotique de certains réseaux de neurones stochastiques. Nous utilisons le principe de grandes déviations (PGD) et la bonne fonction de taux H que nous y annoncions pour démontrer l'existence d'un unique minimimum,
We continue the development, started in [8], of the asymptotic description of certain stochastic neural networks. We use the Large Deviation Principle (LDP) and the good rate function H announced there to prove that H has a unique minimum
Accepté le :
Publié le :
@article{CRMATH_2014__352_10_847_0, author = {Faugeras, Olivier and Maclaurin, James}, title = {Asymptotic description of stochastic neural networks. {II.} {Characterization} of the limit law}, journal = {Comptes Rendus. Math\'ematique}, pages = {847--852}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.08.017}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2014.08.017/} }
TY - JOUR AU - Faugeras, Olivier AU - Maclaurin, James TI - Asymptotic description of stochastic neural networks. II. Characterization of the limit law JO - Comptes Rendus. Mathématique PY - 2014 SP - 847 EP - 852 VL - 352 IS - 10 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.08.017/ DO - 10.1016/j.crma.2014.08.017 LA - en ID - CRMATH_2014__352_10_847_0 ER -
%0 Journal Article %A Faugeras, Olivier %A Maclaurin, James %T Asymptotic description of stochastic neural networks. II. Characterization of the limit law %J Comptes Rendus. Mathématique %D 2014 %P 847-852 %V 352 %N 10 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2014.08.017/ %R 10.1016/j.crma.2014.08.017 %G en %F CRMATH_2014__352_10_847_0
Faugeras, Olivier; Maclaurin, James. Asymptotic description of stochastic neural networks. II. Characterization of the limit law. Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 847-852. doi : 10.1016/j.crma.2014.08.017. https://www.numdam.org/articles/10.1016/j.crma.2014.08.017/
[1] Stochastic neural field theory and the system-size expansion, SIAM J. Appl. Math., Volume 70 (2009), pp. 1488-1521
[2] Field-theoretic approach to fluctuation effects in neural networks, Phys. Rev. E, Volume 75 (2007)
[3] Systematic fluctuation expansion for neural network activity equations, Neural Comput., Volume 22 (2010), pp. 377-426
[4] The large deviation principle for hypermixing processes, Probab. Theory Relat. Fields, Volume 78 (1988), pp. 627-649
[5] A master equation formalism for macroscopic modeling of asynchronous irregular activity states, Neural Comput., Volume 21 (2009), pp. 46-100
[6] Large deviations of an ergodic synchronous neural network with learning, 2014 (arXiv depot, INRIA Sophia Antipolis, France) | arXiv
[7] Asymptotic description of neural networks with correlated synaptic weights, INRIA, March 2014 (Rapport de recherche RR-8495)
[8] Asymptotic description of stochastic neural networks. I. Existence of a large deviation principle, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 10, pp. 841-846
[9] Theory of correlations in stochastic neural networks, Phys. Rev. E, Volume 50 (1994)
[10] Étude mathématique de la dynamique des réseaux neuronaux aléatoires récurrents, Université Paul-Sabatier, Toulouse, 1999 (Ph.D. thesis)
Cité par Sources :