Potential theory/Probability theory
Survival time of a heterogeneous random walk in a quadrant
[Marches aléatoires dans un milieu hétérogène, temps de survie dans un quadrant]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 797-801.

Nous obtenons une estimation gaussienne supérieure des probabilités de transition d'une marche aléatoire hétérogène dans le quadrant positif. Les ingrédients essentiels de notre preuve sont des arguments de comparaison basés sur des variantes discrètes du principe de Harnack et des estimations du type grandes déviations.

We obtain upper Gaussian estimates of transition probabilities of inhomogeneous random walks on the positive quadrant. Among the most important steps in our proof are comparison arguments based on discrete variants of the Harnack principle and large deviations estimates.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.08.016
Ben Salem, Néjib 1 ; Mustapha, Sami 2 ; Sifi, Mohamed 1

1 Université de Tunis El Manar, Faculté des Sciences de Tunis, LR11ES11 Laboratoire d'analyse mathématiques et applications, 2092 Tunis, Tunisia
2 Centre de mathématiques de Jussieu, Université Pierre-et-Marie-Curie (Paris-6), tour 46, 5
@article{CRMATH_2014__352_10_797_0,
     author = {Ben Salem, N\'ejib and Mustapha, Sami and Sifi, Mohamed},
     title = {Survival time of a heterogeneous random walk in a quadrant},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {797--801},
     publisher = {Elsevier},
     volume = {352},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crma.2014.08.016},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.08.016/}
}
TY  - JOUR
AU  - Ben Salem, Néjib
AU  - Mustapha, Sami
AU  - Sifi, Mohamed
TI  - Survival time of a heterogeneous random walk in a quadrant
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 797
EP  - 801
VL  - 352
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.08.016/
DO  - 10.1016/j.crma.2014.08.016
LA  - en
ID  - CRMATH_2014__352_10_797_0
ER  - 
%0 Journal Article
%A Ben Salem, Néjib
%A Mustapha, Sami
%A Sifi, Mohamed
%T Survival time of a heterogeneous random walk in a quadrant
%J Comptes Rendus. Mathématique
%D 2014
%P 797-801
%V 352
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.08.016/
%R 10.1016/j.crma.2014.08.016
%G en
%F CRMATH_2014__352_10_797_0
Ben Salem, Néjib; Mustapha, Sami; Sifi, Mohamed. Survival time of a heterogeneous random walk in a quadrant. Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 797-801. doi : 10.1016/j.crma.2014.08.016. http://www.numdam.org/articles/10.1016/j.crma.2014.08.016/

[1] Bousquet-Mélou, M. Walks in the quarter plane: Krewera's algebraic model, Ann. Appl. Probab., Volume 15 (2005), pp. 1451-1491

[2] Bousquet-Mélou, M.; Mishna, M. Walks with small steps in the quarter plane, Contemp. Math., Volume 520 (2010), pp. 1-40

[3] Denisov, D.; Wachtel, V. Random walks in cones, Ann. Probab. (2014) (in press)

[4] Fayolle, G.; Iasnogorodski, R.; Malyshev, V. Random Walks in the Quarter-Plane – Algebraic Methods, Boundary Value Problems and Applications, Appl. Math., vol. 40, Springer-Verlag, Berlin, 1999

[5] Kurkova, I.; Rashel, K. Random walks in the quarter plane, Bull. Soc. Math. Fr., Volume 139 (2011), pp. 341-387

[6] Lafitte-Godillon, P.; Raschel, K.; Tran, V.C. Extinction probabilities for a distylous plant population modeled by an inhomogeneous random walk on the positive quadrant, SIAM J. Appl. Math., Volume 73 (2013), pp. 700-722

[7] Lawler, G.F. Intersections of Random Walks, Birkhäuser/Springer, New York, 2013

[8] MacPhee, I.M.; Menshikov, M.V.; Wade, A.R. Moments of exit times from wedges for non-homogeneous random walks with asymptotically zero drifts, J. Theor. Probab., Volume 26 (2013) no. 1, pp. 1-30

[9] Mustapha, S. Gaussian estimates for stability inhomogeneous random walks on Zd, Ann. Probab., Volume 34 (2006) no. 1, pp. 264-283

[10] Mustapha, S. Gambler's ruin estimates for random walks with symmetric spatially inhomogeneous increments, Bernoulli, Volume 13 (2007) no. 1, pp. 131-147

[11] Raschel, K. Green functions and Martin compactification for killed random walks related to SU(3), Electron. Commun. Probab., Volume 15 (2010), pp. 176-190

[12] Raschel, K. Green functions for killed random walks in the Weyl chamber of Sp(4), Ann. Inst. Henri Poincaré Probab. Stat., Volume 47 (2011), pp. 1001-1019

[13] Raschel, K. Random walks in the quarter plane, discrete harmonic functions and conformal mappings, Stoch. Process. Appl., Volume 124 (2014), pp. 3147-3178 (with an appendix by Sandro Franceschi)

[14] Varopoulos, N.Th. Potential theory in conical domains, Math. Proc. Camb. Philos. Soc., Volume 125 (1999), pp. 335-384

[15] Varopoulos, N.Th. Potential theory in conical domains II, Math. Proc. Camb. Philos. Soc., Volume 129 (2000), pp. 301-319

Cité par Sources :