Probability theory
A generalization of Cramér large deviations for martingales
[Une généralisation des grandes déviations de Cramér pour les martingales]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 853-858.

Dans cette note, nous donnons une généralisation des grandes déviations de Cramér pour les martingales, qui peut être considérée comme un supplément de Fan et al. (2013) [3]. Notre méthode est basée sur le changement de mesure de probabilité développé par Grama et Haeusler (2000) [6].

In this note, we give a generalization of Cramér's large deviations for martingales, which can be regarded as a supplement of Fan et al. (2013) [3]. Our method is based on the change of probability measure developed by Grama and Haeusler (2000) [6].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.08.014
Fan, Xiequan 1, 2 ; Grama, Ion 1 ; Liu, Quansheng 1

1 Univ. Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes, France
2 Regularity Team, Inria and MAS Laboratory, École centrale de Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
@article{CRMATH_2014__352_10_853_0,
     author = {Fan, Xiequan and Grama, Ion and Liu, Quansheng},
     title = {A generalization of {Cram\'er} large deviations for martingales},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {853--858},
     publisher = {Elsevier},
     volume = {352},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crma.2014.08.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.08.014/}
}
TY  - JOUR
AU  - Fan, Xiequan
AU  - Grama, Ion
AU  - Liu, Quansheng
TI  - A generalization of Cramér large deviations for martingales
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 853
EP  - 858
VL  - 352
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.08.014/
DO  - 10.1016/j.crma.2014.08.014
LA  - en
ID  - CRMATH_2014__352_10_853_0
ER  - 
%0 Journal Article
%A Fan, Xiequan
%A Grama, Ion
%A Liu, Quansheng
%T A generalization of Cramér large deviations for martingales
%J Comptes Rendus. Mathématique
%D 2014
%P 853-858
%V 352
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.08.014/
%R 10.1016/j.crma.2014.08.014
%G en
%F CRMATH_2014__352_10_853_0
Fan, Xiequan; Grama, Ion; Liu, Quansheng. A generalization of Cramér large deviations for martingales. Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 853-858. doi : 10.1016/j.crma.2014.08.014. http://www.numdam.org/articles/10.1016/j.crma.2014.08.014/

[1] Cramér, H. Sur un nouveau théorème-limite de la théorie des probabilités, Actual. Sci. Ind., Volume 736 (1938), pp. 5-23

[2] Fan, X.; Grama, I.; Liu, Q. Sharp large deviations under Bernstein's condition, C. R. Acad. Sci. Paris, Sér. I, Volume 351 (2013), pp. 845-848

[3] Fan, X.; Grama, I.; Liu, Q. Cramér large deviation expansions for martingales under Bernstein's condition, Stoch. Process. Appl., Volume 123 (2013), pp. 3919-3942

[4] Feller, W. Generalization of a probability limit theorem of Cramér, Trans. Amer. Math. Soc. (1943), pp. 361-372

[5] Grama, I. On moderate deviations for martingales, Ann. Probab., Volume 25 (1997), pp. 152-184

[6] Grama, I.; Haeusler, E. Large deviations for martingales via Cramér's method, Stoch. Process. Appl., Volume 85 (2000), pp. 279-293

[7] Grama, I.; Haeusler, E. An asymptotic expansion for probabilities of moderate deviations for multivariate martingales, J. Theor. Probab., Volume 19 (2006), pp. 1-44

[8] Haeusler, E.; Joos, K. A nonuniform bound on the rate of convergence in the martingale central limit theorem, Ann. Probab., Volume 16 (1988) no. 4, pp. 1699-1720

[9] Liu, Q.; Watbled, F. Exponential inequalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment, Stoch. Process. Appl., Volume 119 (2009), pp. 3101-3132

[10] Petrov, V.V. A generalization of Cramér's limit theorem, Usp. Mat. Nauk, Volume 9 (1954), pp. 195-202

[11] Petrov, V.V. Sums of Independent Random Variables, Springer-Verlag, Berlin, 1975

[12] Račkauskas, A. On probabilities of large deviations for martingales, Liet. Mat. Rink., Volume 30 (1990), pp. 784-795

[13] Račkauskas, A. Large deviations for martingales with some applications, Acta Appl. Math., Volume 38 (1995), pp. 109-129

[14] Sakhanenko, A.I. Berry–Esseen type bounds for large deviation probabilities, Sib. Math. J., Volume 32 (1991), pp. 647-656

[15] Saulis, L.; Statulevičius, V.A. Limite Theorems for Large Deviations, Kluwer Academic Publishers, 1978

Cité par Sources :