[Critères portant sur des symboles et noyaux pour les classes de Schatten et r-nucléarité sur les variétés compactes]
Nous présentons dans cette Note des critères sur des symboles et noyaux pour s'assurer de ce que les opérateurs correspondants sur des variétés compactes appartiennent à une classe de Schatten. Les opérateurs à trace sont considérés comme un cas spécial. Nous introduisons aussi des notions d'opérateur invariant et de symbole global associés à un opérateur elliptique et les appliquons à l'etude de la nucléarité.
In this Note, we present criteria on both symbols and integral kernels ensuring that the corresponding operators on compact manifolds belong to Schatten classes. A specific test for nuclearity is established as well as the corresponding trace formulae. In the special case of compact Lie groups, kernel criteria in terms of (locally and globally) hypoelliptic operators are also given. A notion of invariant operator and its full symbol associated with an elliptic operator are introduced. Some applications to the study of r-nuclearity on spaces are also obtained.
Accepté le :
Publié le :
@article{CRMATH_2014__352_10_779_0, author = {Delgado, Julio and Ruzhansky, Michael}, title = {Kernel and symbol criteria for {Schatten} classes and \protect\emph{r}-nuclearity on compact manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {779--784}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.08.012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.08.012/} }
TY - JOUR AU - Delgado, Julio AU - Ruzhansky, Michael TI - Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds JO - Comptes Rendus. Mathématique PY - 2014 SP - 779 EP - 784 VL - 352 IS - 10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.08.012/ DO - 10.1016/j.crma.2014.08.012 LA - en ID - CRMATH_2014__352_10_779_0 ER -
%0 Journal Article %A Delgado, Julio %A Ruzhansky, Michael %T Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds %J Comptes Rendus. Mathématique %D 2014 %P 779-784 %V 352 %N 10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.08.012/ %R 10.1016/j.crma.2014.08.012 %G en %F CRMATH_2014__352_10_779_0
Delgado, Julio; Ruzhansky, Michael. Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds. Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 779-784. doi : 10.1016/j.crma.2014.08.012. http://www.numdam.org/articles/10.1016/j.crma.2014.08.012/
[1] , Proc. Int. Congr, Math, Moscow (1966), pp. 57-64
[2] Traceable integral kernels on countably generated measure spaces, Pac. J. Math., Volume 150 (1991) no. 2, pp. 229-240
[3] Estimates for the singular numbers of integral operators, Usp. Mat. Nauk, Volume 32 (1977), pp. 17-84
[4] Schatten–von Neumann properties in the Weyl calculus, J. Funct. Anal., Volume 259 (2010) no. 12, pp. 3080-3114
[5] The trace of nuclear operators on for σ-finite Borel measures on second countable spaces, Integral Equ. Oper. Theory, Volume 68 (2010) no. 1, pp. 61-74
[6] Eigenfunctions of the Laplacian on compact Riemannian manifolds, Asian J. Math., Volume 10 (2006) no. 1, pp. 115-125
[7] Schatten classes and traces on compact Lie groups, 2013 | arXiv
[8] Fourier multipliers, symbols and nuclearity on compact manifolds, 2014 | arXiv
[9] -nuclearity, traces, and Grothendieck–Lidskii formula on compact Lie groups, J. Math. Pures Appl. (9), Volume 102 (2014) no. 1, pp. 153-172
[10] Schatten classes on compact manifolds: kernel conditions, J. Funct. Anal., Volume 267 (2014) no. 3, pp. 772-798
[11] Fourier Integral Operators, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2011 (MR0451313, reprint of the 1996 edition [MR1362544], based on the original lecture notes published in 1973)
[12] Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., Volume 1955 (1955) no. 16 (140 pp)
[13] Remarks on global hypoellipticity, Trans. Amer. Math. Soc., Volume 183 (1973), pp. 153-164
[14] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218
[15] The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, 1985
[16] The Analysis of Linear Partial Differential Operators, vol. IV, Springer-Verlag, 1985
[17] Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics, Pseudo-Differential Operators: Theory and Applications, vol. 2, Birkhäuser Verlag, Basel, Switzerland, 2010
[18] Global quantization of pseudo-differential operators on compact Lie groups, , 3-sphere, and homogeneous spaces, Int. Math. Res. Not., Volume 11 (2013), pp. 2439-2496 | DOI
[19] Hörmander class of pseudo-differential operators on compact Lie groups and global hypoellipticity, J. Fourier Anal. Appl., Volume 20 (2014) no. 3, pp. 476-499
[20] Integro-differential operators on vector bundles, Trans. Amer. Math. Soc., Volume 117 (1965), pp. 167-204
[21] Eigenfunction expansions of analytic functions, Proc. Amer. Math. Soc., Volume 21 (1969), pp. 734-738
[22] Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, USA, 1971
[23] Schatten properties for pseudo-differential operators on modulation spaces, Pseudo-differential Operators, Lecture Notes in Mathematics, vol. 1949, Springer, Berlin, 2008, pp. 175-202
[24] Riemannian manifolds with uniformly bounded eigenfunctions, Duke Math. J., Volume 111 (2002) no. 1, pp. 97-132
[25] Special Trigonometric Series in k-Dimensions, Mem. Amer. Math. Soc., vol. 59, American Mathematical Society, Providence, RI, USA, 1965 (102 pp)
Cité par Sources :