Supposons que les dérivées pures (pas nécéssairement du même ordre) d'une fonction sur soient des mesures de Radon finies. On montre que leur dimension inférieure de Hausdorf est alors au moins .
We prove that if pure derivatives of a function on are complex measures, then their lower Hausdorff dimension is at least . The derivatives with respect to different coordinates may be of different order.
Accepté le :
Publié le :
@article{CRMATH_2014__352_10_791_0, author = {Stolyarov, Dmitriy M. and Wojciechowski, Michal}, title = {Dimension of gradient measures}, journal = {Comptes Rendus. Math\'ematique}, pages = {791--795}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.08.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.08.011/} }
TY - JOUR AU - Stolyarov, Dmitriy M. AU - Wojciechowski, Michal TI - Dimension of gradient measures JO - Comptes Rendus. Mathématique PY - 2014 SP - 791 EP - 795 VL - 352 IS - 10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.08.011/ DO - 10.1016/j.crma.2014.08.011 LA - en ID - CRMATH_2014__352_10_791_0 ER -
%0 Journal Article %A Stolyarov, Dmitriy M. %A Wojciechowski, Michal %T Dimension of gradient measures %J Comptes Rendus. Mathématique %D 2014 %P 791-795 %V 352 %N 10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.08.011/ %R 10.1016/j.crma.2014.08.011 %G en %F CRMATH_2014__352_10_791_0
Stolyarov, Dmitriy M.; Wojciechowski, Michal. Dimension of gradient measures. Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 791-795. doi : 10.1016/j.crma.2014.08.011. http://www.numdam.org/articles/10.1016/j.crma.2014.08.011/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, 2000
[2] Integral Representations of Functions and Embedding Theorems, 1975
[3] New estimates for the Laplacian, the div–curl, and related Hodge systems, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 539-543
[4] Spaces of smooth functions generated by nonhomogeneous differential expressions, Funkc. Anal. Prilozh., Volume 47 (2013) no. 2, pp. 89-92
[5] On an embedding of Sobolev spaces, Mat. Zametki, Volume 54 (1993) no. 3, pp. 48-71 (in Russian)
[6] Estimates of Fourier transform in Sobolev spaces, Stud. Math., Volume 125 (1997) no. 1, pp. 67-74
[7] Rearrangements of functions and embedding of anisotropic spaces of Sobolev type, East J. Approx., Volume 4 (1998) no. 2, pp. 111-198
[8] Introduction to Spaces, Cambridge University Press, Cambridge, UK, 1998
[9] Geometry of Sets and Measures in Euclidean Space, Cambridge University Press, Cambridge, UK, 1995
[10] New Thoughts on Besov Spaces, Duke University Mathematical Series, vol. I, Duke University, Durham, NC, USA, 1976
[11] Singularity of vector valued measures in terms of Fourier transform, J. Fourier Anal. Appl., Volume 12 (2006) no. 2, pp. 213-223
[12] On certain inequalities for functions belonging to -classes, Zap. Nauč. Semin. LOMI, Volume 27 (1972), pp. 194-210 (in Russian)
[13] A constructive proof of the Fefferman–Stein decomposition of , Acta Math., Volume 148 (1982) no. 1, pp. 215-241
[14] Estimates for -vector fields, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 181-186
[15] Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 877-921
Cité par Sources :