Number theory/Algebra
Joubert's theorem fails in characteristic 2
Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 773-777.

Soit L/K une extension de corps séparable de degré 6. En 1867, P. Joubert a démontré que, si la caractéristique de K est différente de 2, l'extension L/K est engendrée par un élément dont le polynôme minimal est de la forme t6+at4+bt2+ct+d, pour des éléments convenables a,b,c,dK. Dans cette note, nous démontrons que ce théorème ne s'étend pas à la caractéristique 2.

Let L/K be a separable field extension of degree 6. A 1867 theorem of P. Joubert asserts that if char(K)2, then L is generated over K by an element whose minimal polynomial is of the form t6+at4+bt2+ct+d for some a,b,c,dK. We show that this theorem fails in characteristic 2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.08.004
Reichstein, Zinovy 1

1 Department of Mathematics, University of British Columbia, Vancouver, Canada
@article{CRMATH_2014__352_10_773_0,
     author = {Reichstein, Zinovy},
     title = {Joubert's theorem fails in characteristic 2},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {773--777},
     publisher = {Elsevier},
     volume = {352},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crma.2014.08.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.08.004/}
}
TY  - JOUR
AU  - Reichstein, Zinovy
TI  - Joubert's theorem fails in characteristic 2
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 773
EP  - 777
VL  - 352
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.08.004/
DO  - 10.1016/j.crma.2014.08.004
LA  - en
ID  - CRMATH_2014__352_10_773_0
ER  - 
%0 Journal Article
%A Reichstein, Zinovy
%T Joubert's theorem fails in characteristic 2
%J Comptes Rendus. Mathématique
%D 2014
%P 773-777
%V 352
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.08.004/
%R 10.1016/j.crma.2014.08.004
%G en
%F CRMATH_2014__352_10_773_0
Reichstein, Zinovy. Joubert's theorem fails in characteristic 2. Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 773-777. doi : 10.1016/j.crma.2014.08.004. http://www.numdam.org/articles/10.1016/j.crma.2014.08.004/

[1] Church, R. Tables of irreducible polynomials for the first four prime moduli, Ann. Math. (2), Volume 36 (1935), pp. 198-209 (MR1503219)

[2] Coray, D.F. Cubic hypersurfaces and a result of Hermite, Duke Math. J., Volume 54 (1987), pp. 657-670 (MR0899410)

[3] A. Duncan, Z. Reichstein, Versality of algebraic group actions and rational points on twisted varieties, J. Algebr. Geom., in press, . | arXiv

[4] Green, D.H.; Taylor, I.S. Irreducible polynomials over composite Galois fields and their applications in coding techniques, Proc. IEEE Inst. Electr. Electron. Eng., Volume 121 (1974), pp. 935-939 (MR0434611)

[5] Hermite, C. Sur l'invariant du dix-huitième ordre des formes du cinquième degré, J. Crelle, Volume 59 (1861), pp. 304-305

[6] Joubert, P. Sur l'equation du sixième degré, C. R. Acad. Sci. Paris, Volume 64 (1867), pp. 1025-1029

[7] Kollár, J. Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu, Volume 1 (2002), pp. 467-476 (MR1956057)

[8] Kraft, H. A result of Hermite and equations of degree 5 and 6, J. Algebra, Volume 297 (2006), pp. 234-253 (MR2206857)

[9] Manin, Yu.I. Cubic forms. Algebra, Geometry, Arithmetic, North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986 (translated from the Russian by M. Hazewinkel) MR0833513

[10] Reichstein, Z. On a theorem of Hermite and Joubert, Can. J. Math., Volume 51 (1999), pp. 69-95 (MR1692919)

[11] Reichstein, Z.; Youssin, B. Essential dimensions of algebraic groups and a resolution theorem for G-varieties, Can. J. Math., Volume 52 (2000), pp. 1018-1056 (with an appendix by J. Kollár and E. Szabó MR1782331)

[12] Reichstein, Z.; Youssin, B. Conditions satisfied by characteristic polynomials in fields and division algebras, J. Pure Appl. Algebra, Volume 166 (2002), pp. 165-189 (MR1868544)

[13] Serre, J.-P. Galois Cohomology, Springer, Berlin, 1997 (translated from the French by Patrick Ion and revised by the author) MR1466966

[14] Serre, J.-P. Cohomological invariants, Witt invariants, and trace forms, Cohomological Invariants in Galois Cohomology, Univ. Lecture Ser., vol. 28, Amer. Math. Soc., Providence, RI, USA, 2003, pp. 1-100 (notes by Skip Garibaldi) MR1999384

Cité par Sources :