Soit une extension de corps séparable de degré 6. En 1867, P. Joubert a démontré que, si la caractéristique de K est différente de 2, l'extension est engendrée par un élément dont le polynôme minimal est de la forme , pour des éléments convenables . Dans cette note, nous démontrons que ce théorème ne s'étend pas à la caractéristique 2.
Let be a separable field extension of degree 6. A 1867 theorem of P. Joubert asserts that if , then L is generated over K by an element whose minimal polynomial is of the form for some . We show that this theorem fails in characteristic 2.
Accepté le :
Publié le :
@article{CRMATH_2014__352_10_773_0, author = {Reichstein, Zinovy}, title = {Joubert's theorem fails in characteristic 2}, journal = {Comptes Rendus. Math\'ematique}, pages = {773--777}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.08.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.08.004/} }
TY - JOUR AU - Reichstein, Zinovy TI - Joubert's theorem fails in characteristic 2 JO - Comptes Rendus. Mathématique PY - 2014 SP - 773 EP - 777 VL - 352 IS - 10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.08.004/ DO - 10.1016/j.crma.2014.08.004 LA - en ID - CRMATH_2014__352_10_773_0 ER -
Reichstein, Zinovy. Joubert's theorem fails in characteristic 2. Comptes Rendus. Mathématique, Tome 352 (2014) no. 10, pp. 773-777. doi : 10.1016/j.crma.2014.08.004. http://www.numdam.org/articles/10.1016/j.crma.2014.08.004/
[1] Tables of irreducible polynomials for the first four prime moduli, Ann. Math. (2), Volume 36 (1935), pp. 198-209 (MR1503219)
[2] Cubic hypersurfaces and a result of Hermite, Duke Math. J., Volume 54 (1987), pp. 657-670 (MR0899410)
[3] A. Duncan, Z. Reichstein, Versality of algebraic group actions and rational points on twisted varieties, J. Algebr. Geom., in press, . | arXiv
[4] Irreducible polynomials over composite Galois fields and their applications in coding techniques, Proc. IEEE Inst. Electr. Electron. Eng., Volume 121 (1974), pp. 935-939 (MR0434611)
[5] Sur l'invariant du dix-huitième ordre des formes du cinquième degré, J. Crelle, Volume 59 (1861), pp. 304-305
[6] Sur l'equation du sixième degré, C. R. Acad. Sci. Paris, Volume 64 (1867), pp. 1025-1029
[7] Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu, Volume 1 (2002), pp. 467-476 (MR1956057)
[8] A result of Hermite and equations of degree 5 and 6, J. Algebra, Volume 297 (2006), pp. 234-253 (MR2206857)
[9] Cubic forms. Algebra, Geometry, Arithmetic, North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986 (translated from the Russian by M. Hazewinkel) MR0833513
[10] On a theorem of Hermite and Joubert, Can. J. Math., Volume 51 (1999), pp. 69-95 (MR1692919)
[11] Essential dimensions of algebraic groups and a resolution theorem for G-varieties, Can. J. Math., Volume 52 (2000), pp. 1018-1056 (with an appendix by J. Kollár and E. Szabó MR1782331)
[12] Conditions satisfied by characteristic polynomials in fields and division algebras, J. Pure Appl. Algebra, Volume 166 (2002), pp. 165-189 (MR1868544)
[13] Galois Cohomology, Springer, Berlin, 1997 (translated from the French by Patrick Ion and revised by the author) MR1466966
[14] Cohomological invariants, Witt invariants, and trace forms, Cohomological Invariants in Galois Cohomology, Univ. Lecture Ser., vol. 28, Amer. Math. Soc., Providence, RI, USA, 2003, pp. 1-100 (notes by Skip Garibaldi) MR1999384
Cité par Sources :