Differential geometry
Harmonic vector fields on Landsberg manifolds
[Champs de vecteurs harmoniques sur les variétés landsbergiennes]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 737-741.

Soit (M,F) une variété landsbergienne compacte sans bord. Dans cet article, il est obtenu une condition nécessaire et suffisante pour qu'un champ de vecteurs sur (M,F) soit harmonique. On donne ensuite un énoncé analogue sur une variété finslérienne compacte sans bord. En outre, on étudie la non-existence de champs de vecteurs harmoniques sur les variétés landsbergiennes compactes et, enfin, une borne supérieure pour le premier groupe de cohomologie de de Rham est obtenue.

Let (M,F) be a compact boundaryless Landsberg manifold. In this work, a necessary and sufficient condition for a vector field on (M,F) to be harmonic is obtained. Next, on a compact boundaryless Finsler manifold of zero flag curvature, a necessary and sufficient condition for a vector field to be harmonic is found. Furthermore, the nonexistence of harmonic vector fields on a compact Landsberg manifold is studied and an upper bound for the first de Rham cohomology group is obtained.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.08.002
Shahi, Alireza 1 ; Bidabad, Behroz 1

1 Faculty of Mathematics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, 15914 Tehran, Iran
@article{CRMATH_2014__352_9_737_0,
     author = {Shahi, Alireza and Bidabad, Behroz},
     title = {Harmonic vector fields on {Landsberg} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {737--741},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.08.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.08.002/}
}
TY  - JOUR
AU  - Shahi, Alireza
AU  - Bidabad, Behroz
TI  - Harmonic vector fields on Landsberg manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 737
EP  - 741
VL  - 352
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.08.002/
DO  - 10.1016/j.crma.2014.08.002
LA  - en
ID  - CRMATH_2014__352_9_737_0
ER  - 
%0 Journal Article
%A Shahi, Alireza
%A Bidabad, Behroz
%T Harmonic vector fields on Landsberg manifolds
%J Comptes Rendus. Mathématique
%D 2014
%P 737-741
%V 352
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.08.002/
%R 10.1016/j.crma.2014.08.002
%G en
%F CRMATH_2014__352_9_737_0
Shahi, Alireza; Bidabad, Behroz. Harmonic vector fields on Landsberg manifolds. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 737-741. doi : 10.1016/j.crma.2014.08.002. http://www.numdam.org/articles/10.1016/j.crma.2014.08.002/

[1] Akbar-Zadeh, H. Sur les isométries infinitésimales d'une variété finslérienne compacte, C. R. Acad. Sci. Paris, Ser. A, Volume 278 (1974), pp. 871-874

[2] Akbar-Zadeh, H. Inititiation to Global Finslerian Geometry, North-Holland Mathematical Library, vol. 68, 2006

[3] Bao, D.; Lackey, B. A Hodge decomposition theorem for Finsler spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 323 (1996), pp. 51-56

[4] Bao, D.; Chern, S.; Shen, Z. An Introduction to Riemann–Finsler Geometry, GTM, vol. 200, Springer-Verlag, 2000

[5] Bidabad, B. On compact Finsler spaces of positive constant curvature, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 1191-1194

[6] Bochner, S. Vector fields and Ricci curvature, Bull. Amer. Math. Soc., Volume 52 (1946), pp. 776-797

[7] Wu, H. A remark on the Bochner technique in differential geometry, Proc. Amer. Math. Soc., Volume 78 (1980), pp. 403-408

[8] Yano, K. On harmonic and Killing vector fields, Ann. Math., Volume 55 (1952) no. 1, pp. 38-45

[9] Zhong, C.; Zhong, T. Horizontal Laplace operator in real Finsler vector bundles, Acta Math. Sci., Volume 28 (2008) no. 1, pp. 128-140

Cité par Sources :