Combinatorics/Number theory
Some applications of the r-Whitney numbers
[Quelques applications des nombres r-Whitney]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 965-969.

Le but de ce papier est de présenter une application des nombres r-Whitney aux valeurs des polynômes de Bernoulli et d'Euler aux points rationnels. Les résultats obtenus généralisent les formules connues des nombres de Bernoulli des deux espèces.

The main object of this paper is to give an application of the r-Whitney numbers to the values at rational arguments of the high-order Bernoulli and Euler polynomials. The obtained formulas generalize the known formulas of the Bernoulli numbers of both kinds.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.08.001
Mihoubi, Miloud 1 ; Tiachachat, Meriem 1

1 Faculty of Mathematics, RECITS's laboratory, USTHB, PB 32, El Alia, 16111 Algiers, Algeria
@article{CRMATH_2014__352_12_965_0,
     author = {Mihoubi, Miloud and Tiachachat, Meriem},
     title = {Some applications of the {\protect\emph{r}-Whitney} numbers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {965--969},
     publisher = {Elsevier},
     volume = {352},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crma.2014.08.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.08.001/}
}
TY  - JOUR
AU  - Mihoubi, Miloud
AU  - Tiachachat, Meriem
TI  - Some applications of the r-Whitney numbers
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 965
EP  - 969
VL  - 352
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.08.001/
DO  - 10.1016/j.crma.2014.08.001
LA  - en
ID  - CRMATH_2014__352_12_965_0
ER  - 
%0 Journal Article
%A Mihoubi, Miloud
%A Tiachachat, Meriem
%T Some applications of the r-Whitney numbers
%J Comptes Rendus. Mathématique
%D 2014
%P 965-969
%V 352
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.08.001/
%R 10.1016/j.crma.2014.08.001
%G en
%F CRMATH_2014__352_12_965_0
Mihoubi, Miloud; Tiachachat, Meriem. Some applications of the r-Whitney numbers. Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 965-969. doi : 10.1016/j.crma.2014.08.001. http://www.numdam.org/articles/10.1016/j.crma.2014.08.001/

[1] Belbachir, H.; Bousbaa, I.E. Translated Whitney and r-Whitney numbers: a combinatorial approach, J. Integer Seq., Volume 16 (2013) no. 8 (article 13.8.6)

[2] Benoumhani, M. On Whitney numbers of Dowling lattices, Discrete Math., Volume 159 (1996), pp. 13-33

[3] Broder, A.Z. The r-Stirling numbers, Discrete Math., Volume 49 (1984), pp. 241-259

[4] Cheon, G.-S.; Jung, J.-H. The r-Whitney numbers of Dowling lattices, Discrete Math., Volume 312 (2012) no. 15, pp. 2337-2348

[5] Dowling, T.A. A class of gemometric lattices bases on finite groups, J. Comb. Theory, Ser. B, Volume 14 (1973), pp. 61-86

[6] Graham, R.L.; Knuth, D.E.; Patashnik, O., Addison-Wesley Publishing Company, Reading, MA (1994), p. 1

[7] Luke, Y.L. The Special Functions and Their Approximations, vol. I, Academic Press, New York, London, 1969

[8] Merca, M. A note on the r-Whitney numbers of Dowling lattices, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 649-655

[9] Mezõ, I. A new formula for the Bernoulli polynomials, Results Math., Volume 58 (2010), pp. 329-335

[10] Mihoubi, M.; Tiachachat, M. The values of the high order Bernoulli polynomials at integers and the r-Stirling numbers, 23 Jan. 2014 | arXiv

[11] Nemes, G. An asymptotic expansion for the Bernoulli numbers of the second kind, J. Integer Seq., Volume 14 (2011) (article 11.4.8)

[12] Prabhakar, T.R.; Gupta, S. Bernoulli polynomials of the second kind and general order, Indian J. Pure Appl. Math., Volume 11 (1980), pp. 1361-1368

[13] Rahmani, M. Some results on Whitney numbers of Dowling lattices, Arab J. Math. Sci., Volume 20 (2014) no. 1, pp. 11-27

[14] Roman, S. The Umbral Calculus, Academic Press, 1984

[15] Srivastava, H.M. An explicit formula for the generalized Bernoulli polynomials, J. Math. Anal. Appl., Volume 130 (1988), pp. 509-513

Cité par Sources :