Algebraic geometry/Topology
A note on the Zariski multiplicity conjecture
[Note sur la conjecture de multiplicité de Zariski]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 725-729.

On démontre que les multiplicités algébriques des singularités isolées de deux hypersurfaces complexes topologiquement équisingulières sont égales à condition que les applications qui définissent l'équivalence topologique à droite soient lipchitziennes sur un segment de droite réel, générique, contenant l'origine.

We prove that the algebraic multiplicities of two topologically equisingular isolated complex hypersurface singularities located at the origin are equal provided the continuous maps defining the topological right equivalence are Lipschitz on a generic real line segment departing from the origin.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.07.010
Teymuri Garakani, Mahdi 1

1 Departamento de Matemáticas y Ciencias de la Computacion, Universidad de Santiago de Chile, Alameda, 3363, Estación Central, Santiago, Chile
@article{CRMATH_2014__352_9_725_0,
     author = {Teymuri Garakani, Mahdi},
     title = {A note on the {Zariski} multiplicity conjecture},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {725--729},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.07.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.07.010/}
}
TY  - JOUR
AU  - Teymuri Garakani, Mahdi
TI  - A note on the Zariski multiplicity conjecture
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 725
EP  - 729
VL  - 352
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.07.010/
DO  - 10.1016/j.crma.2014.07.010
LA  - en
ID  - CRMATH_2014__352_9_725_0
ER  - 
%0 Journal Article
%A Teymuri Garakani, Mahdi
%T A note on the Zariski multiplicity conjecture
%J Comptes Rendus. Mathématique
%D 2014
%P 725-729
%V 352
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.07.010/
%R 10.1016/j.crma.2014.07.010
%G en
%F CRMATH_2014__352_9_725_0
Teymuri Garakani, Mahdi. A note on the Zariski multiplicity conjecture. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 725-729. doi : 10.1016/j.crma.2014.07.010. http://www.numdam.org/articles/10.1016/j.crma.2014.07.010/

[1] Bernstein, S. Démonstration du théorème de Weierstrass fondée sur le calcul des probabilities, Commun. Soc. Math. Kharkov, Volume 13 (1912), pp. 1-2

[2] Comte, G.; Milman, P.; Trotman, D. On Zariski's multiplicity problem, Proc. Amer. Math. Soc., Volume 130 (2002) no. 7, pp. 2045-2048

[3] Eyral, C. Zariski's multiplicity question—a survey, N.Z. J. Math., Volume 36 (2007), pp. 253-276

[4] King, H. Topological type of isolated critical points, Ann. Math. (2), Volume 107 (1978) no. 2, pp. 385-397

[5] Milnor, J. Singular Points of Complex Hypersurfaces, Ann. Math. Stud., vol. 61, Princeton University Press & University of Tokyo Press, Princeton, NJ & Tokyo, 1968

[6] Perron, B. Conjugaison topologique des germes de fonctions holomorphes à singularité isolée en dimension trois, Invent. Math., Volume 82 (1985) no. 1, pp. 27-35

[7] Risler, J.-J.; Trotman, D. Bi-Lipschitz invariance of the multiplicity, Bull. Lond. Math. Soc., Volume 29 (1997) no. 2, pp. 200-204

[8] Samuel, P. Algébricité de certains points singuliers algébroides, J. Math. Pures Appl., Volume 35 (1965), pp. 1-6

[9] Teymuri Garakani, M. On Zariski's multiplicity conjecture, Traces in Number Theory, Geometry and Quantum Fields, Asp. Math., vol. E38, Friedr. Vieweg, Wiesbaden, 2008, pp. 213-223

[10] Zariski, O. Some open questions in the theory of equisingularities, Bull. Amer. Math. Soc., Volume 77 (1971), pp. 481-491

[11] Zariski, O. On the topology of algebroid singularities, Amer. J. Math., Volume 54 (1932), pp. 453-465

Cité par Sources :