Le « Site arithmétique » est l'incarnation en géométrie algébrique de l'espace non commutatif, de nature adélique, qui permet d'obtenir la fonction zêta de Riemann comme fonction de dénombrement de Hasse–Weil. Ce site est construit à partir du semi-anneau tropical vu comme un faisceau sur le topos dual du semigroupe multiplicatif des entiers positifs. Nous réalisons les correspondances de Frobenius dans le carré du « Site arithmétique ».
We show that the non-commutative geometric approach to the Riemann zeta function has an algebraic geometric incarnation: the “Arithmetic Site”. This site involves the tropical semiring viewed as a sheaf on the topos dual to the multiplicative semigroup of positive integers. We realize the Frobenius correspondences in the square of the “Arithmetic Site”.
Accepté le :
Publié le :
@article{CRMATH_2014__352_12_971_0, author = {Connes, Alain and Consani, Caterina}, title = {The {Arithmetic} {Site}}, journal = {Comptes Rendus. Math\'ematique}, pages = {971--975}, publisher = {Elsevier}, volume = {352}, number = {12}, year = {2014}, doi = {10.1016/j.crma.2014.07.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.07.009/} }
TY - JOUR AU - Connes, Alain AU - Consani, Caterina TI - The Arithmetic Site JO - Comptes Rendus. Mathématique PY - 2014 SP - 971 EP - 975 VL - 352 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.07.009/ DO - 10.1016/j.crma.2014.07.009 LA - en ID - CRMATH_2014__352_12_971_0 ER -
Connes, Alain; Consani, Caterina. The Arithmetic Site. Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 971-975. doi : 10.1016/j.crma.2014.07.009. http://www.numdam.org/articles/10.1016/j.crma.2014.07.009/
[1] SGA4, LNM, vols. 269, 270, 305 (Artin, M.; Grothendieck, A.; Verdier, J.-L., eds.), Springer-Verlag, Berlin, New York, 1972
[2] Algèbres de polynômes tropicaux, Ann. Math. Blaise Pascal, Volume 20 (2013), pp. 301-330
[3] Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Sel. Math. New Ser., Volume 5 (1999) no. 1, pp. 29-106
[4] Noncommutative Geometry, Quantum Fields, and Motives, Colloquium Publications, vol. 55, American Mathematical Society, 2008
[5] Schemes over and zeta functions, Compos. Math., Volume 146 (2010) no. 6, pp. 1383-1415
[6] From monoïds to hyperstructures: in search of an absolute arithmetic, Casimir Force, Casimir Operators and the Riemann Hypothesis, de Gruyter, 2010, pp. 147-198
[7] Sur une note de Mattuck–Tate, J. Reine Angew. Math., Volume 200 (1958), pp. 208-215
[8] Sheaves in Geometry and Logic. A First Introduction to Topos Theory, Universitext, Springer-Verlag, New York, 1994 (corrected reprint of the 1992 edition)
[9] On a representation of the idèle class group related to primes and zeros of L-functions, Duke Math. J., Volume 127 (2005) no. 3, pp. 519-595
[10] Remarks on semimodules, 2013 | arXiv
[11] Les variétés sur le corps à un élément, Mosc. Math. J., Volume 4 (2004) no. 1, pp. 217-244
Cité par Sources :
☆ Both authors thank Ohio State University where this paper was written.