C. Pépin a construit récemment une compactification semi-factorielle du modèle de Néron d'une variété abélienne en utilisant les techniques de platification de Raynaud–Gruson. Nous montrons ici qu'une compactification semi-factorielle explicite constitue un certain espace de modules de faisceaux – la famille de jacobiens compacifiés.
C. Pépin recently constructed a semi-factorial compactification of the Néron model of an Abelian variety using the flattening technique of Raynaud–Gruson. Here we prove that an explicit semi-factorial compactification is a certain moduli space of sheaves — the family of compactified Jacobians.
Accepté le :
Publié le :
@article{CRMATH_2014__352_9_667_0, author = {Kass, Jesse Leo}, title = {An explicit semi-factorial compactification of the {N\'eron} model}, journal = {Comptes Rendus. Math\'ematique}, pages = {667--671}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.07.007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.07.007/} }
TY - JOUR AU - Kass, Jesse Leo TI - An explicit semi-factorial compactification of the Néron model JO - Comptes Rendus. Mathématique PY - 2014 SP - 667 EP - 671 VL - 352 IS - 9 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.07.007/ DO - 10.1016/j.crma.2014.07.007 LA - en ID - CRMATH_2014__352_9_667_0 ER -
%0 Journal Article %A Kass, Jesse Leo %T An explicit semi-factorial compactification of the Néron model %J Comptes Rendus. Mathématique %D 2014 %P 667-671 %V 352 %N 9 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.07.007/ %R 10.1016/j.crma.2014.07.007 %G en %F CRMATH_2014__352_9_667_0
Kass, Jesse Leo. An explicit semi-factorial compactification of the Néron model. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 667-671. doi : 10.1016/j.crma.2014.07.007. http://www.numdam.org/articles/10.1016/j.crma.2014.07.007/
[1] Compactifying the Picard scheme, Adv. Math., Volume 35 (1980) no. 1, pp. 50-112 MR 555258 (81f:14025a)
[2] Irreducibility of the compactified Jacobian, real and complex singularities, Oslo, 1976, Sijthoff and Noordhoff, Alphen aan den Rijn (1977), pp. 1-12 MR 0498546 (58 #16650)
[3] Compactified Picard schemes and Abel maps for singular curves, Università di Roma La Sapienza, 2008 (Ph.D. thesis)
[4] Compactified Jacobians, Abel maps and theta divisors, curves and Abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 1-23 MR 2457733 (2010b:14088)
[5] Néron models and compactified Picard schemes over the moduli stack of stable curves, Amer. J. Math., Volume 130 (2008) no. 1, pp. 1-47 MR 2382140 (2009j:14030)
[6] Compactified Jacobians of Néron type, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Volume 23 (2012) no. 2, pp. 213-227 (MR 2924900)
[7] The irreducibility of the space of curves of given genus, Publ. Math. IHÉS, Volume 36 (1969), pp. 75-109 MR 0262240 (41 #6850)
[8] Compactification of generalised Jacobians, Proc. Indian Acad. Sci. Sect. A Math. Sci., Volume 88 (1979) no. 5, pp. 419-457 MR 569548 (81h:14004)
[9] Very ampleness for theta on the compactified Jacobian, Math. Z., Volume 226 (1997) no. 2, pp. 181-191 MR 1477626 (98k:14037)
[10] Autoduality of the compactified Jacobian, J. Lond. Math. Soc. (2), Volume 65 (2002) no. 3, pp. 591-610 MR 1895735 (2003d:14038)
[11] On the existence of absolutely simple Abelian varieties of a given dimension over an arbitrary field, J. Number Theory, Volume 92 (2002) no. 1, pp. 139-163 MR 1880590 (2003g:11063)
[12] Two ways to degenerate the Jacobian are the same, Algebra Number Theory, Volume 7 (2013) no. 2, pp. 379-404 (English), MR 3123643
[13] Good completions of Néron models, Ann Arbor, MI (2009) (Ph.D. thesis, Harvard University, MR 2717699)
[14] Desingularization of two-dimensional schemes, Ann. Math. (2), Volume 107 (1978) no. 1, pp. 151-207 MR 0491722 (58 #10924)
[15] Fine compactified Jacobians, Math. Nachr., Volume 285 (2012) no. 8–9, pp. 997-1031 (MR 2928396)
[16] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Tata Institute of Fundamental Research, Bombay, 1970 MR 0282985 (44 #219)
[17] Compactifications of the generalized Jacobian variety, Trans. Amer. Math. Soc., Volume 253 (1979), pp. 1-90 MR 536936 (82e:14054)
[18] Modèles semi-factoriels et modèles de Néron, Math. Ann., Volume 355 (2013) no. 1, pp. 147-185 (MR 3004579)
[19] Critères de platitude et de projectivité. Techniques de “platification” d'un module, Invent. Math., Volume 13 (1971), pp. 1-89 MR 0308104 (46 #7219)
[20] The ampleness of the theta divisor on the compactified Jacobian of a proper and integral curve, Compos. Math., Volume 93 (1994) no. 3, pp. 231-242 MR 1300762 (95m:14017)
Cité par Sources :