Number theory/Algebraic geometry
An explicit semi-factorial compactification of the Néron model
[Une compactification semi-factorielle explicite du modèle de Néron]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 667-671.

C. Pépin a construit récemment une compactification semi-factorielle du modèle de Néron d'une variété abélienne en utilisant les techniques de platification de Raynaud–Gruson. Nous montrons ici qu'une compactification semi-factorielle explicite constitue un certain espace de modules de faisceaux – la famille de jacobiens compacifiés.

C. Pépin recently constructed a semi-factorial compactification of the Néron model of an Abelian variety using the flattening technique of Raynaud–Gruson. Here we prove that an explicit semi-factorial compactification is a certain moduli space of sheaves — the family of compactified Jacobians.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.07.007
Kass, Jesse Leo 1

1 Leibniz Universität Hannover, Institut für algebraische Geometrie, Welfengarten 1, 30060 Hannover, Germany
@article{CRMATH_2014__352_9_667_0,
     author = {Kass, Jesse Leo},
     title = {An explicit semi-factorial compactification of the {N\'eron} model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {667--671},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.07.007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.07.007/}
}
TY  - JOUR
AU  - Kass, Jesse Leo
TI  - An explicit semi-factorial compactification of the Néron model
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 667
EP  - 671
VL  - 352
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.07.007/
DO  - 10.1016/j.crma.2014.07.007
LA  - en
ID  - CRMATH_2014__352_9_667_0
ER  - 
%0 Journal Article
%A Kass, Jesse Leo
%T An explicit semi-factorial compactification of the Néron model
%J Comptes Rendus. Mathématique
%D 2014
%P 667-671
%V 352
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.07.007/
%R 10.1016/j.crma.2014.07.007
%G en
%F CRMATH_2014__352_9_667_0
Kass, Jesse Leo. An explicit semi-factorial compactification of the Néron model. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 667-671. doi : 10.1016/j.crma.2014.07.007. http://www.numdam.org/articles/10.1016/j.crma.2014.07.007/

[1] Altman, A.B.; Kleiman, S.L. Compactifying the Picard scheme, Adv. Math., Volume 35 (1980) no. 1, pp. 50-112 MR 555258 (81f:14025a)

[2] Altman, A.B.; Iarrobino, A.; Kleiman, S.L. Irreducibility of the compactified Jacobian, real and complex singularities, Oslo, 1976, Sijthoff and Noordhoff, Alphen aan den Rijn (1977), pp. 1-12 MR 0498546 (58 #16650)

[3] Busonero, S. Compactified Picard schemes and Abel maps for singular curves, Università di Roma La Sapienza, 2008 (Ph.D. thesis)

[4] Caporaso, L. Compactified Jacobians, Abel maps and theta divisors, curves and Abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 1-23 MR 2457733 (2010b:14088)

[5] Caporaso, L. Néron models and compactified Picard schemes over the moduli stack of stable curves, Amer. J. Math., Volume 130 (2008) no. 1, pp. 1-47 MR 2382140 (2009j:14030)

[6] Caporaso, L. Compactified Jacobians of Néron type, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Volume 23 (2012) no. 2, pp. 213-227 (MR 2924900)

[7] Deligne, P.; Mumford, D. The irreducibility of the space of curves of given genus, Publ. Math. IHÉS, Volume 36 (1969), pp. 75-109 MR 0262240 (41 #6850)

[8] D'Souza, C. Compactification of generalised Jacobians, Proc. Indian Acad. Sci. Sect. A Math. Sci., Volume 88 (1979) no. 5, pp. 419-457 MR 569548 (81h:14004)

[9] Esteves, E. Very ampleness for theta on the compactified Jacobian, Math. Z., Volume 226 (1997) no. 2, pp. 181-191 MR 1477626 (98k:14037)

[10] Esteves, E.; Gagné, M.; Kleiman, S.L. Autoduality of the compactified Jacobian, J. Lond. Math. Soc. (2), Volume 65 (2002) no. 3, pp. 591-610 MR 1895735 (2003d:14038)

[11] Howe, E.W.; Zhu, H.J. On the existence of absolutely simple Abelian varieties of a given dimension over an arbitrary field, J. Number Theory, Volume 92 (2002) no. 1, pp. 139-163 MR 1880590 (2003g:11063)

[12] Kass, J.L. Two ways to degenerate the Jacobian are the same, Algebra Number Theory, Volume 7 (2013) no. 2, pp. 379-404 (English), MR 3123643

[13] Kass, J.L. Good completions of Néron models, Ann Arbor, MI (2009) (Ph.D. thesis, Harvard University, MR 2717699)

[14] Lipman, J. Desingularization of two-dimensional schemes, Ann. Math. (2), Volume 107 (1978) no. 1, pp. 151-207 MR 0491722 (58 #10924)

[15] Melo, M.; Viviani, F. Fine compactified Jacobians, Math. Nachr., Volume 285 (2012) no. 8–9, pp. 997-1031 (MR 2928396)

[16] Mumford, D. Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Tata Institute of Fundamental Research, Bombay, 1970 MR 0282985 (44 #219)

[17] Oda, T.; Seshadri, C.S. Compactifications of the generalized Jacobian variety, Trans. Amer. Math. Soc., Volume 253 (1979), pp. 1-90 MR 536936 (82e:14054)

[18] Pépin, C. Modèles semi-factoriels et modèles de Néron, Math. Ann., Volume 355 (2013) no. 1, pp. 147-185 (MR 3004579)

[19] Raynaud, M.; Gruson, L. Critères de platitude et de projectivité. Techniques de “platification” d'un module, Invent. Math., Volume 13 (1971), pp. 1-89 MR 0308104 (46 #7219)

[20] Soucaris, A. The ampleness of the theta divisor on the compactified Jacobian of a proper and integral curve, Compos. Math., Volume 93 (1994) no. 3, pp. 231-242 MR 1300762 (95m:14017)

Cité par Sources :