Numerical analysis
Finite-element heterogeneous multiscale method for the Helmholtz equation
[Méthode multi-échelle hétérogène d'éléments finis pour l'équation de Helmholtz]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 755-760.

Nous montrons que la méthode multi-échelle hétérogène d'éléments finis (FE-HMM) peut être utilisée pour approcher le comportement effectif des solutions de l'équation de Helmholtz classique dans des milieux rapidement oscillants. À l'aide de cette méthode et de la notion de T-coercivité, nous établissons une borne a priori de l'erreur. Des expériences numériques corroborent les résultats théoriques.

We show that the standard Finite Element Heterogeneous Multiscale Method (FE-HMM) can be used to approximate the effective behavior of solutions to the classical Helmholtz equation in highly oscillatory media. Using a novel combination of well-known results about FE-HMM and the notion of T-coercivity, we derive an a priori error bound. Numerical experiments corroborate the analytical findings.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.07.006
Ciarlet, Patrick Jr. 1 ; Stohrer, Christian 1

1 Laboratoire POEMS, UMA, ENSTA ParisTech, 828, boulevard des Maréchaux, 91762 Palaiseau cedex, France
@article{CRMATH_2014__352_9_755_0,
     author = {Ciarlet, Patrick Jr. and Stohrer, Christian},
     title = {Finite-element heterogeneous multiscale method for the {Helmholtz} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {755--760},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.07.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.07.006/}
}
TY  - JOUR
AU  - Ciarlet, Patrick Jr.
AU  - Stohrer, Christian
TI  - Finite-element heterogeneous multiscale method for the Helmholtz equation
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 755
EP  - 760
VL  - 352
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.07.006/
DO  - 10.1016/j.crma.2014.07.006
LA  - en
ID  - CRMATH_2014__352_9_755_0
ER  - 
%0 Journal Article
%A Ciarlet, Patrick Jr.
%A Stohrer, Christian
%T Finite-element heterogeneous multiscale method for the Helmholtz equation
%J Comptes Rendus. Mathématique
%D 2014
%P 755-760
%V 352
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.07.006/
%R 10.1016/j.crma.2014.07.006
%G en
%F CRMATH_2014__352_9_755_0
Ciarlet, Patrick Jr.; Stohrer, Christian. Finite-element heterogeneous multiscale method for the Helmholtz equation. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 755-760. doi : 10.1016/j.crma.2014.07.006. http://www.numdam.org/articles/10.1016/j.crma.2014.07.006/

[1] Abdulle, A. The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs, GAKUTO Int. Ser. Math. Sci. Appl., Volume 31 (2009), pp. 133-181

[2] Abdulle, A.; E, W.; Engquist, B.; Vanden-Eijnden, E. The heterogeneous multiscale method, Acta Numer., Volume 21 (2012), pp. 1-87

[3] Allaire, G. Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518

[4] Ciarlet, P. Jr. T-coercivity: application to the discretization of Helmholtz-like problems, Comput. Math. Appl., Volume 64 (2012) no. 1, pp. 22-34

[5] Ciarlet, P.G. The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, vol. 40, SIAM, 2002 (reprinted from the 1978 original)

[6] E, W.; Engquist, B. The heterogeneous multiscale methods, Commun. Math. Sci., Volume 1 (2003) no. 1, pp. 87-132

[7] Oleinik, O.A.; Shamaev, A.S.; Yosifian, G.A. Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and Applications, vol. 26, Elsevier, 1992

Cité par Sources :