Nous montrons que la méthode multi-échelle hétérogène d'éléments finis (FE-HMM) peut être utilisée pour approcher le comportement effectif des solutions de l'équation de Helmholtz classique dans des milieux rapidement oscillants. À l'aide de cette méthode et de la notion de T-coercivité, nous établissons une borne a priori de l'erreur. Des expériences numériques corroborent les résultats théoriques.
We show that the standard Finite Element Heterogeneous Multiscale Method (FE-HMM) can be used to approximate the effective behavior of solutions to the classical Helmholtz equation in highly oscillatory media. Using a novel combination of well-known results about FE-HMM and the notion of T-coercivity, we derive an a priori error bound. Numerical experiments corroborate the analytical findings.
Accepté le :
Publié le :
@article{CRMATH_2014__352_9_755_0, author = {Ciarlet, Patrick Jr. and Stohrer, Christian}, title = {Finite-element heterogeneous multiscale method for the {Helmholtz} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {755--760}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.07.006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.07.006/} }
TY - JOUR AU - Ciarlet, Patrick Jr. AU - Stohrer, Christian TI - Finite-element heterogeneous multiscale method for the Helmholtz equation JO - Comptes Rendus. Mathématique PY - 2014 SP - 755 EP - 760 VL - 352 IS - 9 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.07.006/ DO - 10.1016/j.crma.2014.07.006 LA - en ID - CRMATH_2014__352_9_755_0 ER -
%0 Journal Article %A Ciarlet, Patrick Jr. %A Stohrer, Christian %T Finite-element heterogeneous multiscale method for the Helmholtz equation %J Comptes Rendus. Mathématique %D 2014 %P 755-760 %V 352 %N 9 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.07.006/ %R 10.1016/j.crma.2014.07.006 %G en %F CRMATH_2014__352_9_755_0
Ciarlet, Patrick Jr.; Stohrer, Christian. Finite-element heterogeneous multiscale method for the Helmholtz equation. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 755-760. doi : 10.1016/j.crma.2014.07.006. http://www.numdam.org/articles/10.1016/j.crma.2014.07.006/
[1] The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs, GAKUTO Int. Ser. Math. Sci. Appl., Volume 31 (2009), pp. 133-181
[2] The heterogeneous multiscale method, Acta Numer., Volume 21 (2012), pp. 1-87
[3] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518
[4] T-coercivity: application to the discretization of Helmholtz-like problems, Comput. Math. Appl., Volume 64 (2012) no. 1, pp. 22-34
[5] The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, vol. 40, SIAM, 2002 (reprinted from the 1978 original)
[6] The heterogeneous multiscale methods, Commun. Math. Sci., Volume 1 (2003) no. 1, pp. 87-132
[7] Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and Applications, vol. 26, Elsevier, 1992
Cité par Sources :