Geometry/Differential geometry
Blowing-up points on locally conformally balanced manifolds
[Éclatement de points dans les variétés localement conformément équilibrées]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 715-718.

Dans cette note, nous montrons que l'éclatement d'un point dans une variété localement conformément équilibrée admet aussi une structure de variété localement conformément équilibrée.

In this note, we show that the blowing-up of a point on a locally conformally balanced manifold also admits a locally conformally Balanced manifold structure.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.07.005
Lian, Zhao 1 ; Yang, Song 1

1 Department of Mathematics, Sichuan University, Chengdu, 610064 Sichuan, People's Republic of China
@article{CRMATH_2014__352_9_715_0,
     author = {Lian, Zhao and Yang, Song},
     title = {Blowing-up points on locally conformally balanced manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {715--718},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.07.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.07.005/}
}
TY  - JOUR
AU  - Lian, Zhao
AU  - Yang, Song
TI  - Blowing-up points on locally conformally balanced manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 715
EP  - 718
VL  - 352
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.07.005/
DO  - 10.1016/j.crma.2014.07.005
LA  - en
ID  - CRMATH_2014__352_9_715_0
ER  - 
%0 Journal Article
%A Lian, Zhao
%A Yang, Song
%T Blowing-up points on locally conformally balanced manifolds
%J Comptes Rendus. Mathématique
%D 2014
%P 715-718
%V 352
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.07.005/
%R 10.1016/j.crma.2014.07.005
%G en
%F CRMATH_2014__352_9_715_0
Lian, Zhao; Yang, Song. Blowing-up points on locally conformally balanced manifolds. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 715-718. doi : 10.1016/j.crma.2014.07.005. http://www.numdam.org/articles/10.1016/j.crma.2014.07.005/

[1] Fino, A.; Tomassini, A. On astheno-Kähler metrics, J. Lond. Math. Soc., Volume 83 (2011), pp. 290-308

[2] Griffiths, P.; Harris, J. Principles of Algebraic Geometry, Wiley, New York, 1978

[3] Michelsohn, M. On the existence of special metrics in complex geometry, Acta Math., Volume 149 (1982), pp. 261-295

[4] Tricerri, F. Some examples of locally conformal Kähler manifolds, Rend. Semin. Mat. (Torino), Volume 40 (1982), pp. 81-92

[5] Voisin, C. Hodge Theory and Complex Algebraic Geometry I, Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, 2003

[6] Vuletescu, V. Blowing-up points on locally conformally Kähler manifolds, Bull. Math. Soc. Sci. Math. Roum., Volume 52 (2009), pp. 387-390

Cité par Sources :