Partial differential equations/Functional analysis
Norm-resolvent convergence for elliptic operators in domain with perforation along curve
Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 679-683.

On considère une bande infinie avec une famille de petits trous placés le long d'une courbe. Dans ce domaine perforé, on étudie un opérateur scalaire elliptique du second ordre, avec des conditions aux limites classiques aux bords des trous. En supposant que l'emplacement des trous n'est pas périodique, on décrit les problèmes homogénéisés possibles et on démontre la convergence au sens de la norme de la résolvante des opérateurs perturbés vers les opérateurs homogénéisés. On obtient également des estimées pour le taux de convergence.

We consider an infinite strip perforated along a curve by small holes. In this perforated domain, we consider a scalar second-order elliptic differential operator subject to classical boundary conditions on the holes. Assuming that the perforation is non-periodic, we describe possible homogenized problems and prove the norm-resolvent convergence of the perturbed operator to a homogenized one. We also provide estimates for the rate of the convergence.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.07.003
Borisov, Denis 1, 2 ; Cardone, Giuseppe 3 ; Durante, Tiziana 4

1 Institute of Mathematics CS USC RAS, Chernyshevsky str. 112, Ufa, 450008, Russian Federation
2 Bashkir State Pedagogical University, October St. 3a, Ufa, 450000, Russian Federation
3 University of Sannio, Department of Engineering, Corso Garibaldi, 107, 82100 Benevento, Italy
4 University of Salerno, Department of Information and Electrical Engineering and Applied Mathematics, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
@article{CRMATH_2014__352_9_679_0,
     author = {Borisov, Denis and Cardone, Giuseppe and Durante, Tiziana},
     title = {Norm-resolvent convergence for elliptic operators in domain with perforation along curve},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {679--683},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.07.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.07.003/}
}
TY  - JOUR
AU  - Borisov, Denis
AU  - Cardone, Giuseppe
AU  - Durante, Tiziana
TI  - Norm-resolvent convergence for elliptic operators in domain with perforation along curve
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 679
EP  - 683
VL  - 352
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.07.003/
DO  - 10.1016/j.crma.2014.07.003
LA  - en
ID  - CRMATH_2014__352_9_679_0
ER  - 
%0 Journal Article
%A Borisov, Denis
%A Cardone, Giuseppe
%A Durante, Tiziana
%T Norm-resolvent convergence for elliptic operators in domain with perforation along curve
%J Comptes Rendus. Mathématique
%D 2014
%P 679-683
%V 352
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.07.003/
%R 10.1016/j.crma.2014.07.003
%G en
%F CRMATH_2014__352_9_679_0
Borisov, Denis; Cardone, Giuseppe; Durante, Tiziana. Norm-resolvent convergence for elliptic operators in domain with perforation along curve. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 679-683. doi : 10.1016/j.crma.2014.07.003. http://www.numdam.org/articles/10.1016/j.crma.2014.07.003/

[1] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures, North-Holland Publ. Co., Amsterdam, 1978

[2] Birman, M.Sh.; Suslina, T.A. Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class H1(Rd), St. Petersburg Math. J., Volume 18 (2007), pp. 857-955

[3] Borisov, D.; Bunoiu, R.; Cardone, G. Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics, Z. Angew. Math. Phys. V, Volume 64 (2013), pp. 439-472

[4] Borisov, D.; Cardone, G. Homogenization of the planar waveguide with frequently alternating boundary conditions, J. Phys. A, Volume 42 (2009), p. 365205

[5] Borisov, D.; Cardone, G.; Faella, L.; Perugia, C. Uniform resolvent convergence for a strip with fast oscillating boundary, J. Differ. Equ., Volume 255 (2013), pp. 4378-4402

[6] Griso, G. Interior error estimate for periodic homogenization, Asymptot. Anal., Volume 4 (2006), pp. 61-79

[7] Kenig, C.E.; Lin, F.; Shen, Z. Convergence rates in L2 for elliptic homogenization problems, Arch. Ration. Mech. Anal., Volume 203 (2012), pp. 1009-1036

[8] Lobo, M.; Oleinik, O.A.; Pérez, M.E.; Shaposhnikova, T.A. On boundary-value problems in domains perforated along manifolds, Russ. Math. Surv., Volume 52 (1997), pp. 838-839

[9] Pastukhova, S.E. Some estimates from homogenized elasticity problems, Dokl. Math., Volume 73 (2006), pp. 102-106

[10] Sánches-Palencia, É. Non Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, Berlin, New York, 1980

[11] Zhikov, V.V. Spectral method in homogenization theory, Proc. Steklov Inst. Math., Volume 250 (2005), pp. 85-94

Cité par Sources :