Dans cette Note, nous introduisons une nouvelle méthodologie d'inférence bayésienne en utilisant les ϕ-divergences et la technique de dualité. Nous obtenons les lois asymptotiques des estimateurs.
In this note, we introduce a new methodology for Bayesian inference through the use of ϕ-divergences and of the duality technique. The asymptotic laws of the estimates are established.
Accepté le :
Publié le :
@article{CRMATH_2014__352_9_749_0, author = {Cherfi, Mohamed}, title = {On {Bayesian} estimation via divergences}, journal = {Comptes Rendus. Math\'ematique}, pages = {749--754}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.06.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.06.013/} }
TY - JOUR AU - Cherfi, Mohamed TI - On Bayesian estimation via divergences JO - Comptes Rendus. Mathématique PY - 2014 SP - 749 EP - 754 VL - 352 IS - 9 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.06.013/ DO - 10.1016/j.crma.2014.06.013 LA - en ID - CRMATH_2014__352_9_749_0 ER -
Cherfi, Mohamed. On Bayesian estimation via divergences. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 749-754. doi : 10.1016/j.crma.2014.06.013. http://www.numdam.org/articles/10.1016/j.crma.2014.06.013/
[1] General bootstrap for dual ϕ-divergence estimates, J. Probab. Stat. (2012), p. 33 p. (article ID 834107)
[2] Dual divergence estimators of the tail index, ISRN Probab. Stat. (2012), p. 14 p. (article ID 746203)
[3] New estimates and tests of independence in semiparametric copula models, Kybernetika, Volume 46 (2010) no. 1, pp. 178-201
[4] Minimization of ϕ-divergences on sets of signed measures, Studia Sci. Math. Hung., Volume 43 (2006) no. 4, pp. 403-442
[5] Parametric estimation and tests through divergences and the duality technique, J. Multivar. Anal., Volume 100 (2009) no. 1, pp. 16-36
[6] Several applications of divergence criteria in continuous families, Kybernetika, Volume 48 (2012) no. 4, pp. 600-636
[7] Dual divergences estimation for censored survival data, J. Stat. Plan. Inference, Volume 142 (2012) no. 7, pp. 1746-1756
[8] An MCMC approach to classical estimation, J. Econometrics, Volume 115 (2003), pp. 293-346
[9] Multinomial goodness-of-fit tests, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 46 (1984) no. 3, pp. 440-464
[10] Robust Bayesian analysis using divergence measures, Stat. Probab. Lett., Volume 20 (1994) no. 4, pp. 287-294
[11] Robust Bayesian type estimators and their asymptotic representation, Stat. Decis., Volume 8 (1990) no. 1, pp. 61-69
[12] Generalized Bayesian-type estimators. Robust and sensitivity analysis, Kybernetika, Volume 30 (1994) no. 3, pp. 271-278
[13] Bayesian model robustness via disparities, Test (2014) (in press) | DOI
[14] Statistical Estimation — Asymptotic Theory, Springer-Verlag, New York, 1981
[15] Dual representation of ϕ-divergences and applications, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003) no. 10, pp. 857-862
[16] On empirical likelihood for semiparametric two-sample density ratio models, J. Stat. Plan. Inference, Volume 138 (2008) no. 4, pp. 915-928
[17] Theory of Point Estimation, Springer Texts in Statistics, Springer-Verlag, New York, 1998
[18] Convex Statistical Distances, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 95, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, Germany, 1987 (with German, French and Russian summaries)
[19] On divergences and informations in statistics and information theory, IEEE Trans. Inf. Theory, Volume 52 (2006) no. 10, pp. 4394-4412
[20] Efficiency versus robustness: the case for minimum Hellinger distance and related methods, Ann. Statist., Volume 22 (1994) no. 2, pp. 1081-1114
[21] Statistical Inference Based on Divergence Measures, Statistics: Textbooks and Monographs, vol. 185, Chapman & Hall/CRC, Boca Raton, FL, USA, 2006
[22] F. Peng, D. Dey, Bayesian analysis of outlier problems using divergence measures, Canad. J. Statist. 23 (2), 199–213.
[23] G. Ragusa, Bayesian properties of minimum divergence and generalized empirical likelihood methods, Unpublished manuscript, 2006.
[24] The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementations, Springer, New York, 2001
[25] Monte Carlo Statistical Methods, Springer, New York, 2005
[26] Consistency of maximum likelihood and Bayes estimates, Ann. Statist., Volume 9 (1981), pp. 1107-1113
[27] Implementation of estimating-function based inference procedures with Markov chain Monte Carlo samplers, J. Amer. Statist. Assoc., Volume 102 (2007), pp. 881-888
[28] Dual divergence estimators and tests: robustness results, J. Multivar. Anal., Volume 102 (2011) no. 1, pp. 20-36
[29] Robust tests based on dual divergence estimators and saddlepoint approximations, J. Multivar. Anal., Volume 101 (2010) no. 5, pp. 1143-1155
[30] Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 3, Cambridge University Press, Cambridge, UK, 1998
Cité par Sources :