Functional analysis/Probability theory
On the subexponentiality of the ridgelet transform
[Sur la sous-exponentalité de la transformée en ridelettes]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 1029-1031.

La transformée en ridelettes peut être considérée comme une variable aléatoire sous-exponentielle. On donne alors une application de ce résultat aux marches aléatoires.

We show that we can consider the ridgelet transform for Wiener functionals as a subexponential random variable. We give an application of this result to random walks.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.06.012
Martias, Claude 1

1 Université des Antilles et de la Guyane, Faculté des sciences exactes et naturelles, Département de mathématiques et d'informatique, CEREGMIA, 97159 Pointe-à-Pitre cedex, Guadeloupe
@article{CRMATH_2014__352_12_1029_0,
     author = {Martias, Claude},
     title = {On the subexponentiality of the ridgelet transform},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1029--1031},
     publisher = {Elsevier},
     volume = {352},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.06.012/}
}
TY  - JOUR
AU  - Martias, Claude
TI  - On the subexponentiality of the ridgelet transform
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 1029
EP  - 1031
VL  - 352
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.06.012/
DO  - 10.1016/j.crma.2014.06.012
LA  - en
ID  - CRMATH_2014__352_12_1029_0
ER  - 
%0 Journal Article
%A Martias, Claude
%T On the subexponentiality of the ridgelet transform
%J Comptes Rendus. Mathématique
%D 2014
%P 1029-1031
%V 352
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.06.012/
%R 10.1016/j.crma.2014.06.012
%G en
%F CRMATH_2014__352_12_1029_0
Martias, Claude. On the subexponentiality of the ridgelet transform. Comptes Rendus. Mathématique, Tome 352 (2014) no. 12, pp. 1029-1031. doi : 10.1016/j.crma.2014.06.012. http://www.numdam.org/articles/10.1016/j.crma.2014.06.012/

[1] Asmussen, S. Ruin Probabilities, World Scientific, 2000

[2] Baarir, Z.-E.; Ouafi, A. Étude de la transformée en ondelettes dans la compression d'images fixes, Courrier du Savoir, Volume 5 (June 2004), pp. 69-74

[3] Baccelli, F.; Foss, S. Moments and tails in monotone–separable stochastic networks, Ann. Appl. Probab., Volume 14 (2004), pp. 612-650

[4] Baccelli, F.; Foss, S.; Lelarge, M. Asymptotics of a maximal dater in generalized Jackson networks, J. Appl. Probab., Volume 42 (2005), pp. 513-530

[5] Bachman, G.; Narici, L.; Beckenstein, E. Fourier and Wavelet Analysis, Springer-Verlag, New York, 2000

[6] Daubechies, I. Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992

[7] Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling Extremals Events for Insurance and Finance, Springer, Berlin, 1997

[8] Foss, S.; Korshunov, D.; Zachary, S. An Introduction to Heavy-Tailed and Subexponential Distributions, Springer Series in Operations Research and Financial Engineering, Springer, New York/Dordrecht/Heidelberg/London, 2011

[9] Martias, C. La transformée en ridelettes pour les fonctionnelles de Wiener, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 5–6, pp. 259-262

[10] Martias, C. The Wavelet transform for Wiener functionals and some applications, Stoch. Int. J. Probab. Stoch. Process., Volume 86 (2014) no. 5 | DOI

Cité par Sources :