Optimal control/Game theory
Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game
[Sur un jeu différentiel stochastique de somme non nulle avec contrôles de type bang–bang]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 699-706.

Dans cette Note, nous résolvons un jeu différentiel stochastique de somme non nulle avec contrôles d'équilibre de type bang–bang, en utilisant les équations différentielles stochastiques rétrogrades (EDSRs). Le générateur est multi-dimensionnel et discontinu par rapport à z.

In this Note, we solve a nonzero-sum stochastic differential game (NZSDG) with bang–bang-type equilibrium controls by using backward stochastic differential equations (BSDEs). The generator is multi-dimensional and discontinuous with respect to z.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.06.011
Hamadène, Said 1 ; Mu, Rui 1, 2

1 Université du Maine, LMM, avenue Olivier-Messiaen, 72085 Le Mans cedex 9, France
2 School of Mathematics, Shandong University, Jinan 250100, China
@article{CRMATH_2014__352_9_699_0,
     author = {Hamad\`ene, Said and Mu, Rui},
     title = {Bang{\textendash}bang-type {Nash} equilibrium point for {Markovian} nonzero-sum stochastic differential game},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {699--706},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.06.011/}
}
TY  - JOUR
AU  - Hamadène, Said
AU  - Mu, Rui
TI  - Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 699
EP  - 706
VL  - 352
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.06.011/
DO  - 10.1016/j.crma.2014.06.011
LA  - en
ID  - CRMATH_2014__352_9_699_0
ER  - 
%0 Journal Article
%A Hamadène, Said
%A Mu, Rui
%T Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game
%J Comptes Rendus. Mathématique
%D 2014
%P 699-706
%V 352
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.06.011/
%R 10.1016/j.crma.2014.06.011
%G en
%F CRMATH_2014__352_9_699_0
Hamadène, Said; Mu, Rui. Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 699-706. doi : 10.1016/j.crma.2014.06.011. http://www.numdam.org/articles/10.1016/j.crma.2014.06.011/

[1] Cardaliaguet, P. On the instability of the feedback equilibrium payoff in a nonzero-sum differential game on the line, Advances in Dynamic Game Theory, Birkhäuser, Boston, MA, USA, 2007, pp. 57-67

[2] Cardaliaguet, P.; Slawomir, P. Existence and uniqueness of a Nash equilibrium feedback for a simple nonzero-sum differential game, Int. J. Game Theory, Volume 32 (2003) no. 1, pp. 33-71

[3] El-Karoui, N.; Peng, S.; Quenez, M.-C. Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997) no. 1, pp. 1-71

[4] Hamadène, S. Nonzero sum linear-quadratic stochastic differential games and backward–forward equations, Stoch. Anal. Appl., Volume 17 (1999) no. 1, pp. 117-130

[5] Hamadène, S.; Lepeltier, J.-P.; Peng, S. BSDEs with continuous coefficients and stochastic differential games, Pitman Research Notes in Mathematics Series, 1997, pp. 115-128

[6] Haussmann, U.G. A Stochastic Maximum Principle for Optimal Control of Diffusions, John Wiley & Sons, Inc., 1986

[7] Mannucci, P. Nonzero-sum stochastic differential games with discontinuous feedback, SIAM J. Control Optim., Volume 43 (2004) no. 4, pp. 1222-1233

[8] Olsder, G.J. On open- and closed-loop bang–bang control in nonzero-sum differential games, SIAM J. Control Optim., Volume 40 (2002) no. 4, pp. 1087-1106

[9] Pardoux, E.; Peng, S. Adapted solution of a backward stochastic differential equation, Syst. Control Lett., Volume 14 (1990) no. 1, pp. 55-61

Cité par Sources :