Algebraic geometry
Normalized non-Archimedean links and surface singularities
[Entrelacs non archimédiens normalisés et singularités des surfaces]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 719-723.

On définit un analogue en géométrie analytique non archimédienne de l'entrelac d'une singularité, et on l'utilise pour étudier les surfaces sur un corps algébriquement clos. Cela donne une caractérisation des valuations log-essentielles.

We define a non-Archimedean analytic version of the link of a singularity, and we use it to study surfaces over an algebraically closed field. This yields a characterization of log essential valuations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.06.010
Fantini, Lorenzo 1

1 University of Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
@article{CRMATH_2014__352_9_719_0,
     author = {Fantini, Lorenzo},
     title = {Normalized {non-Archimedean} links and surface singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {719--723},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.06.010/}
}
TY  - JOUR
AU  - Fantini, Lorenzo
TI  - Normalized non-Archimedean links and surface singularities
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 719
EP  - 723
VL  - 352
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.06.010/
DO  - 10.1016/j.crma.2014.06.010
LA  - en
ID  - CRMATH_2014__352_9_719_0
ER  - 
%0 Journal Article
%A Fantini, Lorenzo
%T Normalized non-Archimedean links and surface singularities
%J Comptes Rendus. Mathématique
%D 2014
%P 719-723
%V 352
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.06.010/
%R 10.1016/j.crma.2014.06.010
%G en
%F CRMATH_2014__352_9_719_0
Fantini, Lorenzo. Normalized non-Archimedean links and surface singularities. Comptes Rendus. Mathématique, Tome 352 (2014) no. 9, pp. 719-723. doi : 10.1016/j.crma.2014.06.010. http://www.numdam.org/articles/10.1016/j.crma.2014.06.010/

[1] Berkovich, V.G. Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990

[2] Berkovich, V.G. Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHÉS (1993), pp. 5-161

[3] Bosch, S.; Lütkebohmert, W. Stable reduction and uniformization of Abelian varieties. I, Math. Ann., Volume 270 (1985) no. 3, pp. 349-379

[4] Bosch, S.; Lütkebohmert, W. Formal and rigid geometry. I. Rigid spaces, Math. Ann., Volume 295 (1993) no. 2, pp. 291-317

[5] Ducros, A. La structure des courbes analytiques http://www.math.jussieu.fr/~ducros/livre.html (book in preparation. Preliminary version available on)

[6] Favre, C.; Jonsson, M. The Valuative Tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004

[7] Jonsson, M.; Mustaţă, M. Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble), Volume 62 (2012) no. 6, pp. 2145-2209

[8] Liu, Q. Sur les espaces de Stein quasi-compacts en géométrie rigide, Tohoku Math. J. (2), Volume 42 (1990) no. 3, pp. 289-306

[9] Nash, J.J.F. Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38

[10] Thuillier, A. Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d'homotopie de certains schémas formels, Manuscr. Math., Volume 123 (2007) no. 4, pp. 381-451

Cité par Sources :