Dans cette note, nous proposons une nouvelle analyse pour les méthodes d'éléments finis stabilisées introduites dans Burman (2013) [2], appliquées a des problèmes mal posés avec des propriétés de dépendance continue faibles. Nous obtenons des estimations a priori et a posteriori sans supposer ni coercitivité ni stabilité inf–sup de la forme bilinéaire du problème continu.
We propose an analysis for the stabilized finite element methods proposed in Burman (2013) [2] valid in the case of ill-posed problems for which only weak continuous dependence can be assumed. A priori and a posteriori error estimates are obtained without assuming coercivity or inf–sup stability of the continuous problem.
Accepté le :
Publié le :
@article{CRMATH_2014__352_7-8_655_0, author = {Burman, Erik}, title = {Error estimates for stabilized finite element methods applied to ill-posed problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {655--659}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.06.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.06.008/} }
TY - JOUR AU - Burman, Erik TI - Error estimates for stabilized finite element methods applied to ill-posed problems JO - Comptes Rendus. Mathématique PY - 2014 SP - 655 EP - 659 VL - 352 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.06.008/ DO - 10.1016/j.crma.2014.06.008 LA - en ID - CRMATH_2014__352_7-8_655_0 ER -
%0 Journal Article %A Burman, Erik %T Error estimates for stabilized finite element methods applied to ill-posed problems %J Comptes Rendus. Mathématique %D 2014 %P 655-659 %V 352 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.06.008/ %R 10.1016/j.crma.2014.06.008 %G en %F CRMATH_2014__352_7-8_655_0
Burman, Erik. Error estimates for stabilized finite element methods applied to ill-posed problems. Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 655-659. doi : 10.1016/j.crma.2014.06.008. http://www.numdam.org/articles/10.1016/j.crma.2014.06.008/
[1] The stability for the Cauchy problem for elliptic equations, Inverse Probl., Volume 25 (2009) no. 12, p. 123004 (47 p)
[2] Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations, SIAM J. Sci. Comput., Volume 35 (2013) no. 6, p. A2752-A2780
Cité par Sources :