Numerical analysis
Error estimates for stabilized finite element methods applied to ill-posed problems
[Estimations d'erreurs pour des méthodes d'éléments finis stabilisées appliquées à des problèmes mal posés]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 655-659.

Dans cette note, nous proposons une nouvelle analyse pour les méthodes d'éléments finis stabilisées introduites dans Burman (2013) [2], appliquées a des problèmes mal posés avec des propriétés de dépendance continue faibles. Nous obtenons des estimations a priori et a posteriori sans supposer ni coercitivité ni stabilité inf–sup de la forme bilinéaire du problème continu.

We propose an analysis for the stabilized finite element methods proposed in Burman (2013) [2] valid in the case of ill-posed problems for which only weak continuous dependence can be assumed. A priori and a posteriori error estimates are obtained without assuming coercivity or inf–sup stability of the continuous problem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.06.008
Burman, Erik 1

1 Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom
@article{CRMATH_2014__352_7-8_655_0,
     author = {Burman, Erik},
     title = {Error estimates for stabilized finite element methods applied to ill-posed problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {655--659},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.06.008/}
}
TY  - JOUR
AU  - Burman, Erik
TI  - Error estimates for stabilized finite element methods applied to ill-posed problems
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 655
EP  - 659
VL  - 352
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.06.008/
DO  - 10.1016/j.crma.2014.06.008
LA  - en
ID  - CRMATH_2014__352_7-8_655_0
ER  - 
%0 Journal Article
%A Burman, Erik
%T Error estimates for stabilized finite element methods applied to ill-posed problems
%J Comptes Rendus. Mathématique
%D 2014
%P 655-659
%V 352
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.06.008/
%R 10.1016/j.crma.2014.06.008
%G en
%F CRMATH_2014__352_7-8_655_0
Burman, Erik. Error estimates for stabilized finite element methods applied to ill-posed problems. Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 655-659. doi : 10.1016/j.crma.2014.06.008. http://www.numdam.org/articles/10.1016/j.crma.2014.06.008/

[1] Alessandrini, G.; Rondi, L.; Rosset, E.; Vessella, S. The stability for the Cauchy problem for elliptic equations, Inverse Probl., Volume 25 (2009) no. 12, p. 123004 (47 p)

[2] Burman, E. Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations, SIAM J. Sci. Comput., Volume 35 (2013) no. 6, p. A2752-A2780

Cité par Sources :