Nous montrons un théorème général d'existence et d'unicité de solution d'une équation de type Monge–Ampère complexe sur des variétés de Kähler compactes.
We show a general existence theorem of solutions to the complex Monge–Ampère type equation on compact Kähler manifolds.
Accepté le :
Publié le :
@article{CRMATH_2014__352_7-8_589_0, author = {Benelkourchi, Slimane}, title = {Weak solutions to complex {Monge{\textendash}Amp\`ere} equations on compact {K\"ahler} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {589--592}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.06.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.06.003/} }
TY - JOUR AU - Benelkourchi, Slimane TI - Weak solutions to complex Monge–Ampère equations on compact Kähler manifolds JO - Comptes Rendus. Mathématique PY - 2014 SP - 589 EP - 592 VL - 352 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.06.003/ DO - 10.1016/j.crma.2014.06.003 LA - en ID - CRMATH_2014__352_7-8_589_0 ER -
%0 Journal Article %A Benelkourchi, Slimane %T Weak solutions to complex Monge–Ampère equations on compact Kähler manifolds %J Comptes Rendus. Mathématique %D 2014 %P 589-592 %V 352 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.06.003/ %R 10.1016/j.crma.2014.06.003 %G en %F CRMATH_2014__352_7-8_589_0
Benelkourchi, Slimane. Weak solutions to complex Monge–Ampère equations on compact Kähler manifolds. Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 589-592. doi : 10.1016/j.crma.2014.06.003. http://www.numdam.org/articles/10.1016/j.crma.2014.06.003/
[1] Équations du type Monge–Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris, Volume 283 (1976), pp. 119-121
[2] Équations du type Monge–Ampère sur les variétës kählériennes compactes, Bull. Sci. Math., Volume 102 (1978), pp. 63-95
[3] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982) no. 1–2, pp. 1-40
[4] Fine topology, Šilov boundary, and , J. Funct. Anal., Volume 72 (1987) no. 2, pp. 225-251
[5] A priori estimates for weak solutions of complex Monge–Ampère equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume VII (2008), pp. 1-16
[6] A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci., Volume 117 (2013), pp. 179-245
[7] Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262
[8] The equation of complex Monge–Ampère type and stability of solutions, Math. Ann., Volume 334 (2006) no. 4, pp. 713-729
[9] Uniqueness in , J. Funct. Anal., Volume 256 (2009) no. 7, pp. 2113-2122
[10] Functional Analysis: Theory and Applications, Holt-Rinehart and Winston, 1965
[11] Intrinsic capacities on compact Kahler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639
[12] The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482
[13] Weak solutions of equations of complex Monge–Ampère type, Ann. Pol. Math., Volume 73 (2000) no. 1, pp. 59-67
[14] Solutions to degenerate complex Hessian equations, J. Math. Pures Appl., Volume 100 (2013), pp. 785-805
[15] The complex Monge–Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., Volume 178 (2005) no. 840 (x+64 pp.)
[16] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Commun. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411
Cité par Sources :