Étant donnée une fonction intérieure θ, on démontre que sa dérivée est extérieure si et seulement si θ est une transformation de Möbius.
We prove that the derivative of an inner function θ is outer if and only if θ is a Möbius transformation. An alternative characterization involving a reverse Schwarz–Pick type estimate is also given.
Accepté le :
Publié le :
@article{CRMATH_2014__352_7-8_593_0, author = {Dyakonov, Konstantin M.}, title = {A characterization of {M\"obius} transformations}, journal = {Comptes Rendus. Math\'ematique}, pages = {593--595}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.05.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.05.009/} }
TY - JOUR AU - Dyakonov, Konstantin M. TI - A characterization of Möbius transformations JO - Comptes Rendus. Mathématique PY - 2014 SP - 593 EP - 595 VL - 352 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.05.009/ DO - 10.1016/j.crma.2014.05.009 LA - en ID - CRMATH_2014__352_7-8_593_0 ER -
Dyakonov, Konstantin M. A characterization of Möbius transformations. Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 593-595. doi : 10.1016/j.crma.2014.05.009. http://www.numdam.org/articles/10.1016/j.crma.2014.05.009/
[1] On inner functions with -derivative, Mich. Math. J., Volume 21 (1974), pp. 115-127
[2] Theory of Functions of a Complex Variable, Vol. II, Chelsea Publ. Co., New York, 1954
[3] Smooth functions and coinvariant subspaces of the shift operator, Algebra Anal., Volume 4 (1992) no. 5, pp. 117-147 (English transl. in St. Petersburg Math. J., 4, 1993, pp. 933-959)
[4] A reverse Schwarz–Pick inequality, Comput. Methods Funct. Theory, Volume 13 (2013), pp. 449-457
[5] Bounded Analytic Functions, Springer, New York, 2007
[6] Note on the location of zeros of the derivative of a rational function whose zeros and poles are symmetric in a circle, Bull. Amer. Math. Soc., Volume 45 (1939), pp. 462-470
Cité par Sources :