Harmonic analysis
Universal sampling, quasicrystals and bounded remainder sets
[Échantillonnage universel, quasicristaux et ensembles à restes bornés]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 633-638.

Nous examinons le résultat, dû à Matei et à Meyer, selon lequel les quasicristaux simples sont des ensembles d'échantillonnage universel, dans le cas critique où la densité de l'ensemble d'échantillonnage est égale à la mesure du spectre. Nous montrons que, dans ce cas, une condition arithmétique sur le quasicristal détermine s'il s'agit d'un ensemble universel d'échantillonnage « stable et non redondant ».

We examine the result due to Matei and Meyer that simple quasicrystals are universal sampling sets, in the critical case when the density of the sampling set is equal to the measure of the spectrum. We show that in this case, an arithmetical condition on the quasicrystal determines whether it is a universal set of “stable and non-redundant” sampling.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.05.006
Grepstad, Sigrid 1 ; Lev, Nir 2

1 Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
2 Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
@article{CRMATH_2014__352_7-8_633_0,
     author = {Grepstad, Sigrid and Lev, Nir},
     title = {Universal sampling, quasicrystals and bounded remainder sets},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {633--638},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.05.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.05.006/}
}
TY  - JOUR
AU  - Grepstad, Sigrid
AU  - Lev, Nir
TI  - Universal sampling, quasicrystals and bounded remainder sets
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 633
EP  - 638
VL  - 352
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.05.006/
DO  - 10.1016/j.crma.2014.05.006
LA  - en
ID  - CRMATH_2014__352_7-8_633_0
ER  - 
%0 Journal Article
%A Grepstad, Sigrid
%A Lev, Nir
%T Universal sampling, quasicrystals and bounded remainder sets
%J Comptes Rendus. Mathématique
%D 2014
%P 633-638
%V 352
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.05.006/
%R 10.1016/j.crma.2014.05.006
%G en
%F CRMATH_2014__352_7-8_633_0
Grepstad, Sigrid; Lev, Nir. Universal sampling, quasicrystals and bounded remainder sets. Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 633-638. doi : 10.1016/j.crma.2014.05.006. http://www.numdam.org/articles/10.1016/j.crma.2014.05.006/

[1] Avdonin, S.A. On the question of Riesz bases of exponential functions in L2, Vestn. Leningr. Univ., Volume 13 (1974), pp. 5-12 (in Russian). English translation in Vestn. Leningr. Univ., Math., 7, 1979, pp. 203-211

[2] Beurling, A. Balayage of Fourier–Stieltjes transforms, The Collected Works of Arne Beurling, vol. 2, Harmonic Analysis, Birkhäuser, Boston, 1989

[3] Boltianski, V. Hilbert's Third Problem, Wiley, 1978

[4] Grepstad, S.; Lev, N. Multi-tiling and Riesz bases, Adv. Math., Volume 252 (2014), pp. 1-6

[5] Grepstad, S.; Lev, N. Sets of bounded discrepancy for multi-dimensional irrational rotation, 2014 (preprint) | arXiv

[6] Hruščev, S.V.; Nikol'skii, N.K.; Pavlov, B.S. Unconditional bases of exponentials and of reproducing kernels, Leningrad, 1979/1980 (Lect. Notes Math.), Volume vol. 864, Springer, Berlin (1981), pp. 214-335

[7] Kahane, J.-P. Sur les fonctions moyenne-périodiques bornées, Ann. Inst. Fourier, Volume 7 (1957), pp. 293-314

[8] Kozma, G.; Lev, N. Exponential Riesz bases, discrepancy of irrational rotations and BMO, J. Fourier Anal. Appl., Volume 17 (2011), pp. 879-898

[9] Landau, H.J. Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., Volume 117 (1967), pp. 37-52

[10] Lev, N. Riesz bases of exponentials on multiband spectra, Proc. Am. Math. Soc., Volume 140 (2012), pp. 3127-3132

[11] Matei, B.; Meyer, Y. Quasicrystals are sets of stable sampling, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 1235-1238

[12] Matei, B.; Meyer, Y. Simple quasicrystals are sets of stable sampling, Complex Var. Elliptic Equ., Volume 55 (2010), pp. 947-964

[13] Nitzan, S.; Olevskii, A. Revisiting Landau's density theorems for Paley–Wiener spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 509-512

[14] Olevskii, A.; Ulanovskii, A. Universal sampling of band-limited signals, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 927-931

[15] Olevskii, A.; Ulanovskii, A. Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal., Volume 18 (2008), pp. 1029-1052

[16] Olevskii, A.; Ulanovskii, A. On multi-dimensional sampling and interpolation, Anal. Math. Phys., Volume 2 (2012), pp. 149-170

[17] Young, R.M. An Introduction to Nonharmonic Fourier Series, Academic Press, Orlando, FL, 2001

Cité par Sources :

Research partially supported by the Israel Science Foundation Grant No. 225/13.