L'objectif de cette note est de montrer qu'un groupe qui a un seul bout et est finiment présenté possède la propriété des sphères connexes. Cette propriété consiste à dire qu'il existe un tel que, pour tout , l'intersection de la boule (dans un graphe de Cayley) de rayon et de la composante infinie dans le complémentaire de la boule de rayon n est connexe.
The aim of this short note is to prove a useful result about the connectedness of spheres in Cayley graphs. By sphere, one refers to the sphere connected at infinity: the intersection of , the ball of radius , with , the infinite component ball of the complement of the ball of radius n. We show that in a finitely presented group with one end, there exists r such that is connected (for any n).
Accepté le :
Publié le :
@article{CRMATH_2014__352_7-8_573_0, author = {Gournay, Antoine}, title = {A remark on the connectedness of spheres in {Cayley} graphs}, journal = {Comptes Rendus. Math\'ematique}, pages = {573--576}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.05.005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.05.005/} }
TY - JOUR AU - Gournay, Antoine TI - A remark on the connectedness of spheres in Cayley graphs JO - Comptes Rendus. Mathématique PY - 2014 SP - 573 EP - 576 VL - 352 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.05.005/ DO - 10.1016/j.crma.2014.05.005 LA - en ID - CRMATH_2014__352_7-8_573_0 ER -
%0 Journal Article %A Gournay, Antoine %T A remark on the connectedness of spheres in Cayley graphs %J Comptes Rendus. Mathématique %D 2014 %P 573-576 %V 352 %N 7-8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.05.005/ %R 10.1016/j.crma.2014.05.005 %G en %F CRMATH_2014__352_7-8_573_0
Gournay, Antoine. A remark on the connectedness of spheres in Cayley graphs. Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 573-576. doi : 10.1016/j.crma.2014.05.005. http://www.numdam.org/articles/10.1016/j.crma.2014.05.005/
[1] Word distance on the discrete Heisenberg group, Colloq. Math., Volume 95 (2003) no. 1, pp. 21-36
[2] The geometry of the word problem, Invitations to Geometry and Topology, Oxf. Grad. Texts Math., vol. 7, 2002, pp. 29-91
[3] Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, 1999
[4] Dead end words in lamplighter groups and other wreath products, Q. J. Math., Volume 56 (2005) no. 2, pp. 165-178
[5] One-end finitely presented groups acting on the circle, Nonlinearity, Volume 27 (2014), pp. 1205-1223 | DOI
[6] Vanishing of -cohomology in rank one via transport, boundary and packing | arXiv
[7] Enden offener Räume und unendliche diskontinuierliche Gruppen, Comment. Math. Helv., Volume 16 (1944), pp. 81-100
[8] Some remarks on depth of dead ends in groups, Int. J. Algebra Comput., Volume 19 (2009) no. 4, pp. 585-594
[9] Group Theory and Three-Dimensional Manifolds, Yale Mathematical Monographs, vol. 4, Yale University Press, New Haven, Conn.–London, 1971 (v+65 p.)
[10] A group with deep pockets for all finite generating sets, Isr. J. Math., Volume 185 (2011), pp. 317-342
[11] Strongly t-logarithmic t-generating sets: geometric properties of some soluble groups | arXiv
Cité par Sources :