Group theory/Topology
A remark on the connectedness of spheres in Cayley graphs
[Une remarque sur la connexité des sphères dans les graphes de Cayley]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 573-576.

L'objectif de cette note est de montrer qu'un groupe qui a un seul bout et est finiment présenté possède la propriété des sphères connexes. Cette propriété consiste à dire qu'il existe un r>0 tel que, pour tout n0, l'intersection de la boule (dans un graphe de Cayley) de rayon n+r et de la composante infinie dans le complémentaire de la boule de rayon n est connexe.

The aim of this short note is to prove a useful result about the connectedness of spheres in Cayley graphs. By sphere, one refers to the sphere connected at infinity: the intersection of Bn+r, the ball of radius n+r, with Bnc,, the infinite component ball of the complement of the ball of radius n. We show that in a finitely presented group with one end, there exists r such that Bn+rBnc, is connected (for any n).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.05.005
Gournay, Antoine 1

1 Université de Neuchâtel, rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
@article{CRMATH_2014__352_7-8_573_0,
     author = {Gournay, Antoine},
     title = {A remark on the connectedness of spheres in {Cayley} graphs},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {573--576},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.05.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.05.005/}
}
TY  - JOUR
AU  - Gournay, Antoine
TI  - A remark on the connectedness of spheres in Cayley graphs
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 573
EP  - 576
VL  - 352
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.05.005/
DO  - 10.1016/j.crma.2014.05.005
LA  - en
ID  - CRMATH_2014__352_7-8_573_0
ER  - 
%0 Journal Article
%A Gournay, Antoine
%T A remark on the connectedness of spheres in Cayley graphs
%J Comptes Rendus. Mathématique
%D 2014
%P 573-576
%V 352
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.05.005/
%R 10.1016/j.crma.2014.05.005
%G en
%F CRMATH_2014__352_7-8_573_0
Gournay, Antoine. A remark on the connectedness of spheres in Cayley graphs. Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 573-576. doi : 10.1016/j.crma.2014.05.005. http://www.numdam.org/articles/10.1016/j.crma.2014.05.005/

[1] Blachère, S. Word distance on the discrete Heisenberg group, Colloq. Math., Volume 95 (2003) no. 1, pp. 21-36

[2] Bridson, M. The geometry of the word problem, Invitations to Geometry and Topology, Oxf. Grad. Texts Math., vol. 7, 2002, pp. 29-91

[3] Bridson, M.; Haefliger, A. Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, 1999

[4] Cleary, S.; Taback, J. Dead end words in lamplighter groups and other wreath products, Q. J. Math., Volume 56 (2005) no. 2, pp. 165-178

[5] Filimonov, D.A.; Kleptsyn, V.A. One-end finitely presented groups acting on the circle, Nonlinearity, Volume 27 (2014), pp. 1205-1223 | DOI

[6] Gournay, A. Vanishing of p-cohomology in rank one via transport, boundary and packing | arXiv

[7] Hopf, H. Enden offener Räume und unendliche diskontinuierliche Gruppen, Comment. Math. Helv., Volume 16 (1944), pp. 81-100

[8] Lehnert, J. Some remarks on depth of dead ends in groups, Int. J. Algebra Comput., Volume 19 (2009) no. 4, pp. 585-594

[9] Stallings, J. Group Theory and Three-Dimensional Manifolds, Yale Mathematical Monographs, vol. 4, Yale University Press, New Haven, Conn.–London, 1971 (v+65 p.)

[10] Warshall, A. A group with deep pockets for all finite generating sets, Isr. J. Math., Volume 185 (2011), pp. 317-342

[11] Warshall, A. Strongly t-logarithmic t-generating sets: geometric properties of some soluble groups | arXiv

Cité par Sources :