Partial differential equations
KAM for quasi-linear KdV
[KAM pour KdV quasi-linéaire]
Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 603-607.

Nous prouvons l'existence de solutions quasi périodiques linéairement stables pour des perturbations hamiltoniennes autonomes quasi linéaires de l'équation KdV.

We prove the existence and stability of Cantor families of quasi-periodic, small-amplitude solutions of quasi-linear autonomous Hamiltonian perturbations of KdV.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.04.012
Baldi, Pietro 1 ; Berti, Massimiliano 2 ; Montalto, Riccardo 2

1 Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università di Napoli Federico II, Via Cintia, Monte S. Angelo, 80126 Napoli, Italy
2 SISSA, Via Bonomea 265, 34136 Trieste, Italy
@article{CRMATH_2014__352_7-8_603_0,
     author = {Baldi, Pietro and Berti, Massimiliano and Montalto, Riccardo},
     title = {KAM for quasi-linear {KdV}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {603--607},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.04.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.04.012/}
}
TY  - JOUR
AU  - Baldi, Pietro
AU  - Berti, Massimiliano
AU  - Montalto, Riccardo
TI  - KAM for quasi-linear KdV
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 603
EP  - 607
VL  - 352
IS  - 7-8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.04.012/
DO  - 10.1016/j.crma.2014.04.012
LA  - en
ID  - CRMATH_2014__352_7-8_603_0
ER  - 
%0 Journal Article
%A Baldi, Pietro
%A Berti, Massimiliano
%A Montalto, Riccardo
%T KAM for quasi-linear KdV
%J Comptes Rendus. Mathématique
%D 2014
%P 603-607
%V 352
%N 7-8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.04.012/
%R 10.1016/j.crma.2014.04.012
%G en
%F CRMATH_2014__352_7-8_603_0
Baldi, Pietro; Berti, Massimiliano; Montalto, Riccardo. KAM for quasi-linear KdV. Comptes Rendus. Mathématique, Tome 352 (2014) no. 7-8, pp. 603-607. doi : 10.1016/j.crma.2014.04.012. http://www.numdam.org/articles/10.1016/j.crma.2014.04.012/

[1] Baldi, P. Periodic solutions of fully nonlinear autonomous equations of Benjamin–Ono type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 33-77

[2] Baldi, P.; Berti, M.; Montalto, R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., Volume 359 (2014), pp. 471-536 | DOI

[3] Baldi, P.; Berti, M.; Montalto, R. KAM for autonomous quasi-linear perturbations of KdV, 2014 (preprint) | arXiv

[4] M. Berti, P. Bolle, A Nash–Moser approach to KAM theory, preprint, 2014.

[5] Iooss, G.; Plotnikov, P.I.; Toland, J.F. Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., Volume 177 (2005) no. 3, pp. 367-478

[6] Kappeler, T.; Pöschel, J. KdV and KAM, Springer, 2003

[7] Kuksin, S. A KAM theorem for equations of the Korteweg–de Vries type, Rev. Math. Math. Phys., Volume 10 (1998) no. 3, pp. 1-64

[8] Kuksin, S. Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and Applications, vol. 19, Oxford University Press, 2000

[9] Liu, J.; Yuan, X. A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., Volume 307 (2011) no. 3, pp. 629-673

[10] Pöschel, J. Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., Volume 71 (1996) no. 2, pp. 269-296

[11] Procesi, M.; Procesi, C. A normal form for the Schrödinger equation with analytic non-linearities, Commun. Math. Phys., Volume 312 (2012), pp. 501-557

Cité par Sources :